Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów 'symetria CP' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 2 wyniki

  1. W LHCb zaobserwowano, po raz pierwszy w historii, naruszenie symetrii CP podczas rozpadu mezonu D0. To historyczne wydarzenie, które z pewnością trafi do podręczników fizyki. To krok milowy fizyki cząstek. Od czasu odkrycia przed ponad 40 laty mezonu D fizycy podejrzewali, że naruszenie symetrii CP zachodzi również w tym systemie. Jednak dopiero teraz, po analizie wszystkich danych, jakie udało się zebrać w LHCb możemy potwierdzić, że zaobserwowaliśmy to zjawisko, mówi Eckhard Elsen, dyrektor ds. badań i obliczeń w CERN. Symetria ładunkowo-przestrzenna CP to termin, który oznacza, że każda cząstka elementarna ma swój odpowiednik, czyli antycząstkę. Są one pod wieloma względami identyczne, różnią się za to ładunkami elektrycznymi oraz liczbami kwantowymi. Wiadomo jednak, gdy w grę wchodzą oddziaływania słabe, symetria w niektórych cząstkach nie jest zachowana. Dochodzi do naruszeń symetrii CP. Zjawisko to po raz pierwszy zaobserwowano w latach 60. ubiegłego roku w Brookhaven Laboratory podczas rozpadu neutralnych kaonów. W 1980 roku autorzy odkrycia, James Watson Cronin i Val Logsdon Fitch, otrzymali za nie Nagrodę Nobla z fizyki. Później w 2001 roku badania nad naruszeniem symetrii CP w mezonie B przeprowadził zespół z USA i Japonii. Ponownie skończyło się to Nagrodą Nobla, którą w 2008 roku otrzymali Makoto Kobayashi, Toshihide Masakawa i Yoichiro Nambu. Naruszenie symetrii CP to jeden z podstawowych procesów zachodzących we wszechświecie. To dzięki niemu rozpoczął się proces, który po Wielkim Wybuchu doprowadził do pojawienia się przewagi materii nad antymaterią. Jednak rozmiary obecnie obserwowanych naruszeń w Modelu Standardowym są zbyt małe, by wyjaśnić istniejącą nierównowagę pomiędzy materią a antymaterią. To zaś sugeruje, że istnieją dodatkowe, nieznane jeszcze, źródła naruszeń CP. Mezon D0 składa się z kwarka powabnego i antykwarka górnego. Dotychczas naruszenia symetrii CP były obserwowane wyłącznie w cząstkach zawierających kwark dziwny lub kwark niski. Dotychczasowe obserwacje potwierdzały wzorzec naruszeń symetrii CP opisany w Modelu Standardowym za pomocą macierzy Cabibbo-Kobayashiego-Masakawy (macierz CKM). Opisuje ona, jakie przemiany zachodzą w kwarkach wskutek oddziaływań słabych. Jednym z największych zadań współczesnej fizyki cząstek jest uzupełnianie macierzy. Odkrycie, że naruszenie symetrii CP zachodzi też w mezonach D0 to pierwszy dowód na przemiany w kwarku powabnym. Najnowszego odkrycia dokonano analizując pełny zestaw danych uzyskanych w LHCb w latach 2011–2018 pochodzących z rozpadów mezonu D0 i jego antycząstki, antymezonu D0. Znaczenie statystyczne odkrycia wynosi 5,3, czyli przekracza próg sigma 5, wyznaczający pewność dokonanego odkrycia. « powrót do artykułu
  2. Na początku było po równo - materii i antymaterii. Tak głosi teoria Wielkiego Wybuchu. Tymczasem nasz świat złożony jest wyłącznie z materii. Gdzie się zatem podziała cała antymateria, którą obserwujemy tak rzadko? Ośmioletnie badania nad neutrinami w ośrodku Fermilab sugerują zaburzenie symetrii CP (ładunku i przestrzeni) pomiędzy materią i antymaterią i mogą stanowić wyjaśnienie zagadkowej nierównowagi. Neutrino, jedna z podstawowych cząstek Modelu Standardowego jest wyjątkowo trudnym obiektem badań. Nie posiada ładunku elektrycznego i niemal nie posiada masy. Rzadko styka się z większymi cząsteczkami a trudno obserwować coś, co przelatuje na wylot przez każdą aparaturę badawczą. Dlatego badania nad neutrinami wymagają olbrzymich detektorów i szaleńczej cierpliwości. Coś jednak wiemy: neutrina, jakie znamy, występują w trzech odmianach (zwanych zapachami) - neutrino elektronowe, mionowe i taonowe. Jedną z zagadkowych ich właściwości jest oscylacja - biegnąc przez przestrzeń neutrina nieustannie przechodzą z jednego rodzaju w drugie. Podobnie ma się sprawa, jak się uważa, z antyneutrinami. Przynajmniej uważano do niedawna, bo dziś kwestia nie jest taka pewna. W roku 1990 (w skali czasu potrzebnego na badanie neutrin to bardzo niedawno) badania wykonywane przy pomocy detektora neutrin LSND (Liquid Scintillator Neutrino Detector) w Laboratorium Narodowym w Los Alamos wykazały większą od spodziewanej ilość oscylacji antyneutrin na niewielkich odległościach, co mogło sugerować istnienie czwartego typu (zapachu) neutrina, nazwanego „sterylnym". Więc jest ta symetria, czy jej nie ma? Potwierdzenie takich odkryć nie jest łatwe i nikomu się nie udawało. Dlatego w roku 2002 w ośrodku badawczym Fermilab pod Chicago zbudowano detektor neutrin MiniBooNE. Zbudowany jest on z półkilometrowego podziemnego tunelu, na którego krańcu znajduje się ogromny zbiornik z olejem mineralnym. Zderzenia neutrin - bardzo rzadkie - z cząsteczkami oleju są rejestrowane i można stwierdzić, do jakiego typu należało kolidujące neutrino. Przez pięć lat prowadzono obserwację oscylacji neutrin i wreszcie w roku 2007 uznano, że kontrowersyjne odkrycie z Los Alamos nie zostało potwierdzone. Od tego czasu jednak przerzucono się na gromadzenie danych na temat oscylacji antyneutrin. Po trzech latach rejestracji można było wstępnie przejrzeć wyniki - i tu zaskoczenie: zaobserwowano więcej oscylacji antyneutrin, niż wynikałoby z wyliczeń dla jedynie trzech typów. Otwiera się pole dla istnienia czwartego zapachu antyneutrina i niewykluczone, że również następnych. Rezultat jest pierwszym doświadczalnym obaleniem symetrii CP - teorii, że materia i antymateria zachowują się jednakowo, w sposób „lustrzany" względem siebie. Pociąga to za sobą istną rewolucję: konieczność przebudowania całego Modelu Standardowego i fizyki cząsteczkowej. Fizycy teoretycy już tworzą pierwsze teorie i modele wyjaśniające ten fenomen i uzupełniające naszą wiedzę. Zanim jednak rewolucja w fizyce zostanie hucznie ogłoszona, potrzebne jest jej mocniejsze potwierdzenie. Po trzech latach gromadzenia danych ich pewność wynosi 99,7% - dla zwykłego człowieka dużo, dla naukowca wciąż zbyt mało. Aby wynik uznano za dowiedziony, potrzebna jest pewność przynajmniej 99,99994%. Dlatego rejestracja danych i badanie oscylacji antyneutrin w Fermilabie będzie trwało jeszcze przynajmniej półtora roku.
×
×
  • Dodaj nową pozycję...