Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów 'slidetronika' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 1 wynik

  1. Badacze z Uniwersytetu w Tel Awiwie odkryli nowy sposób na przełączanie polaryzacji ultracienkich materiałów ferroelektrycznych. Nazwali swoją metodę „slidetroniką” – slidetronics – gdyż do przełączania dochodzi, gdy sąsiadujące warstwy atomów prześlizgują się w poprzek siebie. Slidetronika może być alternatywnym efektywnym sposobem kontrolowania miniaturowych urządzeń elektrycznych. Możłiwość przełączania polaryzacji elektrycznej na niewielkich obszarach to kluczowy element nowoczesnych technologii. Stosuje się ją m.in. w dyskach twardych. W ostatnich latach grubość indywidualnych domen o różnej polaryzacji udało się zmniejszyć ze 100 nanometrów do skali atomów. Jednak dalsza miniaturyzacja staje się poważnym problemem, gdyż może dochodzić do długodystansowych interakcji pomiędzy różnymi domenami, która powoduje, że polaryzacja indywidualnych domen zostaje ujednolicona. W miarę zmniejszania domen magnetycznych, efekty powierzchniowe zaczynają odgrywać coraz większą rolę. Specjaliści, by poradzić sobie z tym problemami, zaczęli rozglądać się za materiałami alternatywnymi dla krzemu, jak heksagonalny azotek boru (h-BN) czy dichalkogenki metali przejściowych (TMD). To materiały, których warstwy mogą mieć grubość atomu i jednocześnie posiadać uporządkowaną strukturę krystaliczną. Tworzy się je z nakładających się na siebie warstw utrzymywanych przez słabe oddziaływania van der Waalsa. Problem jednak w tym, że polaryzacja naturalnie uzyskiwanych jest ograniczona, gdyż materiały te mają tendencję do przyjmowania struktury centrosymetrycznej. Badacze pracujący pod kierunkiem Moshe Ben Shaloma przełamali tę niepożądaną symetrię kontrolując kąt ułożenia dwóch sąsiadujących warstw hBN. Ułożenie, które łamie symetrię i zachowuje polaryzację to jedno z pięciu możliwych ułożeń dwuwarstwowego h-BN. Podzieliliśmy to na dwie grupy: „równoległą” i „antyrównoległą”, mówi Ben Shalom. W ułożeniu optymalnie antyrównoległym (AA+) atomy azotu z jednej warstwy spoczywają na atomach boru z drugiej. W orientacji niestabilnie równoległej (AA) wszystkie atomu azotu z obu warstw spoczywają na sobie i warstwy się odpychają. Przesuwają się względem siebie do czasu, aż stworzą tylko połowa atomów nachodzi na siebie (konfiguracja AB). Okazało się, że takie przesunięcie warstw (AB) względem siebie pozwala na lokalne przełączanie polaryzacji. Naukowcy stwierdzili, że taka stabilna polaryzacja może być niezwykle użyteczna w dalszej miniaturyzacji nieulotnych układów pomięci. Elektrony mogą się wydajnie tunelować pomiędzy obiema warstwami i mechanizm ten można wykorzystać do szybkiego odczytu i zapisu polaryzacji. « powrót do artykułu
×
×
  • Dodaj nową pozycję...