Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów 'rozróżnianie' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 2 wyniki

  1. Choć wyczuwanie zapachu światła mogłoby się kojarzyć z doświadczeniami synestetyka, w rzeczywistości naukowcy zaprzęgli takie właśnie zjawisko do badania sposobów wykorzystywanych przez mózg do rozróżniania woni. Ponieważ zapachy są skomplikowane chemicznie, trudno wyodrębnić obwody neuronalne, które odpowiadają za ich detekcję czy rozróżnianie. Stąd pomysł na wykorzystanie optogenetyki. Prof. Venkatesh N. Murthy i jego zespół z Uniwersytetu Harvarda oraz Cold Spring Harbor Laboratory wbudował aktywowane przez światło kanały jonowe ChR (od ang. channelrhodopsin) w obwodową część węchomózgowia myszy. W ten sposób wyhodowano zwierzęta, u których szlaki węchowe są aktywowane przez światło, a nie przez bodźce zapachowe. Akademicy wykorzystali ChR, ponieważ w ich skład wchodzi cząsteczka retinalu. Ma ona zdolność absorbowania światła i pod jego wpływem zmienia konformację przestrzenną. Murthy podkreśla, że z pozoru członkowie jego zespołu zachowali się antyintuicyjnie. W rzeczywistości jednak odseparowanie poszczególnych wzorców aktywacji mózgu pod wpływem zapachów byłoby niezwykle trudne, jeśli nie niemożliwe, ponieważ wonie są bardzo zróżnicowane i niekiedy wyjątkowo subtelne. Zapytaliśmy więc: co by było, gdybyśmy sprawili, by nos działał jak siatkówka? Dzięki optogenetyce naukowcy mogli scharakteryzować wzorce aktywacji w opuszce węchowej, czyli rejonie otrzymującym informacje bezpośrednio z receptorów nosa. Jako że świetlne dane wejściowe można łatwo kontrolować, Amerykanie przeprowadzili serię eksperymentów ze stymulacją konkretnych neuronów czuciowych. Pierwsze pytanie dotyczyło organizacji przetwarzania oraz tego, jak podobne dane wejściowe są przetwarzane przez sąsiadujące komórki mózgu. Okazało się jednak, że organizacja przestrzenna informacji węchowej w mózgu nie wyjaśnia w pełni naszej zdolności wyczuwania zapachów. Istotna wydaje się również organizacja czasowa. Studium zespołu Murthy'ego pozwala w pewnym stopniu wyjaśnić, jaką rolę w postrzeganiu woni odgrywa timing.
  2. Granie na instrumentach wspomaga działanie mózgu oraz polepsza słyszenie wszystkich rodzajów dźwięków, w tym mowy. Doświadczenie muzyczne wydaje się pomagać w innych dziedzinach życia, przenosząc się na takie czynności, jak czytanie, wychwytywanie niuansów w tonie głosu czy lepsze słyszenie dźwięków w rozsadzanej hałasem klasie — wyjaśnia Nina Kraus, neurolog z Northwestern University. Według niej, opisane odkrycie uzasadnia zachowanie lekcji muzyki w szkolnym programie nauczania. Kiedy trzeba jakoś sprostać wymogom budżetu, jako pierwsze "obcina się" właśnie lekcje muzyki. A to duży błąd. W eksperymencie wzięło udział 20 dorosłych wolontariuszy. Oglądali wybrany przez siebie film. Największą popularnością cieszyły się ponoć obrazy Faceci w czerni, Iniemamocni oraz Medal dla miss. Połowa badanych przez co najmniej 6 lat uczyła się gry na jakimś instrumencie, a nauka rozpoczęła się, zanim skończyli 12 lat. Edukacja muzyczna pozostałych nie trwała dłużej niż 3 lata. Dla wszystkich językiem ojczystym był angielski, nigdy też nie uczyli się mandaryńskiego. Podczas seansu badani słyszeli w tle słowa pochodzące właśnie z mandaryńskiego. Brzmiały jak "mi" i miały głośność zwykłej rozmowy. Język mandaryński jest językiem tonalnym, można w nim wyróżnić 4 tony: wysoki (yīnpíng), wznoszący (yángpíng), opadająco-wznoszący (shǎngshēng) i opadający (qùshēng). W związku z tym jednakowo zapisywany wyraz może mieć kilka różnych znaczeń, w zależności od zastosowanego tonu. Mi w tonie wysokim oznacza "mrugać", "zezować", w tonie wznoszącym "zbijać z tropu", "dezorientować", a w tonie opadająco-wznoszącym "ryż". Przez cały czas monitorowano aktywność mózgu. Pomimo że uwaga wolontariuszy koncentrowała się na filmie, a dźwięki nie miały dla nich znaczenia językowego ani muzycznego, osoby dłużej grające na instrumencie osiągały lepsze wyniki w odróżnianiu od siebie 3 tonacji mandaryńskiego — opowiada Patrick Wong z Northwestern University. Zjawisko to występuje w mniejszym lub większym stopniu u zwykłych ludzi. Nie trzeba być wybitnym muzykiem, by umieć to robić. Zmiany zachodzące pod wpływem muzyki dokonywały się w pniu mózgu, który zawiaduje m.in. oddychaniem czy biciem serca. Zawsze sądzono, że jest ona domeną kory mózgowej, a pień uznawano za twór niezmienny i niezaangażowany w skomplikowane procesy konieczne do gry na instrumencie (Nature Neuroscience). Sądzimy, że muzyka uruchamia wyższe funkcje zlokalizowane w korze, które z kolei zmieniają pień mózgu. W dalszej kolejności Kraus chce znaleźć odpowiedzi na kolejne pytania: 1) w jakim wieku należy zacząć trening, 2) czy poprzez naukę muzyki można pomóc dzieciom z zaburzeniami czytania oraz pisania i wreszcie 3) ile lat trzeba mieć, by dało się zauważyć efekty.
×
×
  • Dodaj nową pozycję...