Znajdź zawartość
Wyświetlanie wyników dla tagów 'polaryzacja' .
Znaleziono 5 wyników
-
Po raz pierwszy udało się utworzyć i zmierzyć postulowany od dawna stan powiązania pomiędzy atomami. Naukowcy z Wiednia i Innsbrucku wykorzystali laser do spolaryzowania atomów tak bardzo, że z jednej strony miały ładunki dodatnie, z drugiej ujemne. Dzięki temu mogli związać atomy ze sobą. Oddziaływania pomiędzy nimi były znacznie słabsze niż pomiędzy atomami w standardowej molekule, ale na tyle silne, że można było mierzyć ich wartość. W atomie jądro o ładunku dodatnim otoczone jest przez chmurę elektronów o ładunku ujemnym. Całość jest obojętna. Jeśli teraz włączymy zewnętrzne pole elektryczne, rozkład ładunków nieco się zmieni. Ładunki dodatnie przemieszczą się w jednym kierunku, ujemne w w drugim i atom będzie posiadał stronę dodatnią i ujemną, stanie się spolaryzowany, mówi profesor Philipp Haslinger. Taką polaryzację atomu można uzyskać też za pomocą światła, które jest szybko zmieniającym się polem elektromagnetycznym. Gdy liczne atomy znajdują się blisko siebie, światło polaryzuje je w ten sam sposób. Więc dwa sąsiadujące ze sobą atomy będą zwrócone do siebie przeciwnymi ładunkami, co spowoduje, że będą się przyciągać. To bardzo słabe oddziaływanie, zatem eksperyment trzeba prowadzić bardzo ostrożnie, by móc zmierzyć siłę oddziaływania. Gdy atomy mają dużo energii i szybko się poruszają, to przyciąganie natychmiast znika. Dlatego też użyliśmy podczas eksperymentów ultrazimnych atomów, wyjaśnia Mira Maiwöger z Wiedeńskiego Uniwersytetu Technologicznego. Naukowcy najpierw złapali atomy w pułapkę i je schłodzili. Następnie pułapka została wyłączona, a uwolnione atomy rozpoczęły swobodny spadek. Taka chmura opadających atomów była niezwykle zimna, jej temperatura była niższa niż 1/1 000 000 kelwina, ale miała na tyle dużo energii, że podczas spadku rozszerzała się. Jeśli jednak na tym etapie atomy zostaną spolaryzowane za pomocą lasera i pojawi się pomiędzy nimi przyciąganie, rozszerzanie się chmury zostaje spowolnione. W ten właśnie sposób można zmierzyć siłę oddziaływania pomiędzy atomami. Polaryzowanie indywidualnych atomów za pomocą lasera nie jest niczym nowym. Kluczowym elementem naszego eksperymentu było jednoczesne spolaryzowanie w sposób kontrolowany wielu atomów i stworzenie mierzalnych oddziaływań pomiędzy nimi, dodaje Matthias Sonnleitner, który opracował teoretyczne założenia eksperymentu. Autorzy eksperymentu zwracają uwagę, że zmierzone przez nich oddziaływanie może odgrywać ważną rolę w astrofizyce. W pustce kosmosu małe siły mogą odgrywać duża rolę. Po raz pierwszy wykazaliśmy, że promieniowanie elektromagnetyczne może tworzyć oddziaływania pomiędzy atomami, co może rzucić nowe światło na niewyjaśnione obecnie zjawiska astrofizyczne, dodaje Haslinger. « powrót do artykułu
- 1 odpowiedź
-
- polaryzacja
- atomy
-
(i 2 więcej)
Oznaczone tagami:
-
Na Pennsylvania State University wykorzystano budowę oka krewetki modliszkowej (Odontodactylus scyllarus) do stworzenia dwuczęściowej płytki półfalowej, która może przyczynić się do udoskonalenia pamięci holograficznych, płyt CD czy DVD. Krewetka modliszkowa to jedno z niewielu zwierząt, które widzi polaryzację światła. Wielu naukowców sądzi, że oczy tych zwierząt lepiej współpracują z olbrzymim spektrum światła niż jakakolwiek płytka półfalowa stworzona przez człowieka. Chcemy zmienić polaryzację światła, bez wpływania na jego ilość, przechodzącą przez płytkę. Chcemy by wysoka przepuszczalność i zmiana polaryzacji były niezależne od częstotliwości. Innymi słowy, nie chcemy wpływać na kolor światła - mówi Akhlesh Lakhtakia z Penn State. Płytki półfalowe są wykorzystywane w tych urządzeniach, w których potrzebna jest konkretna polaryzacja, a w których dochodzi do jej zmiany. Zwykle są one wykonywane z kwarcu, kalcytu lub polimerów. Produkowane są też płytki wielowarstwowe, jednak mają one tendencję do rozwarstwiania się. Dlatego też uczeni z Uniwersytetu Technologicznego w Taipei we współpracy z profesorem Lakhtakią stworzyli płytkę wzorując się na budowie oka krewetki modliszkowej (krewetki boksującej). Naukowcy stworzyli trójwarstwową płytkę z pięciotlenku tantalu. Wykorzystali przy tym dwie metody osadzania warstw. Jedna pozwoliła na wyprodukowanie środkowej warstwy nanopręcików, które są do siebie równoległe i pochylone w tę samą stronę. Dwie zewnętrzne warstwy to również równoległe nanopręciki, ale wszystkie są ustawione pionowo. Te różne warstwy są konieczne gdy chcemy uzyskać wymaganą polaryzację bez jednoczesnego znaczącego zmniejszania przezroczystości w szerokim spektrum częstotliwości - poinformował Lakhtakia. Jako że długość nanopręcików jest mniejsza niż długość fali światła widzialnego, cała płytka charakteryzuje się dwójłomnością. Naukowcy zapewniają jednocześnie, że ich technika produkcji tego typu płytek wykorzystuje powszechnie używane technologie, nie wymaga zatem inwestowania w sprzęt litograficzny i jest kompatybilna z technologiami obecnymi w przemyśle elektronicznym i optoelektronicznym.
-
Zbyt gęsta krew może uszkodzić naczynia krwionośne i zwiększyć prawdopodobieństwo zawału. Prof. Rongjia Tao, fizyk z Temple University, zauważył jednak, że krew można rozrzedzić, poddając ją działaniu pola magnetycznego (Physical Review E). Wcześniej ten sam naukowiec zasłynął jako pionier wykorzystania pól elektrycznych i magnetycznych do zmniejszania lepkości ropy w silnikach i rurociągach. Obecnie analogiczny mechanizm zastosowano, by rozrzedzić krew. Ponieważ hemoglobina czerwonych krwinek zawiera żelazo, włączając na około minutę pole magnetyczne (indukcja wynosiła 1,3 T, czyli mniej więcej tyle, co w przypadku aparatów do rezonansu), Tao był w stanie zmniejszyć lepkość krwi aż o 20-30%. Amerykanie przeprowadzili testy na próbkach krwi. Ustalili, że pole magnetyczne polaryzuje erytrocyty. Łączą się one w krótkie łańcuchy, co przyspiesza przepływ krwi. Jako że taki łańcuch jest większy od pojedynczej komórki, płynie środkiem, przez co zmniejsza się tarcie o ściany naczynia. Summa summarum krew staje się rzadsza i płynie swobodniej. Po wyłączeniu pola w ciągu kilku godzin dochodziło do przywrócenia pierwotnej lepkości. Tao tłumaczy, że manipulując natężeniem pola i długością pulsu, można zmieniać wielkość agregatów krwinek. Opisana forma magnetoreologii stanowi skuteczny sposób kontrolowania lepkości krwi w wybranym zakresie. Fizyk dodaje, że jego technika przewyższa obecnie stosowaną aspirynę pod wieloma względami. Po pierwsze, jest bezpieczniejsza. Po drugie, zapewnia powtarzalność. Co ważne, zmniejszenie lepkości nie wpływa na normalną funkcję erytrocytów, dzięki czemu nadal mogą wykonywać swoje zadania i dostarczać tkankom tlen.
- 2 odpowiedzi
-
- czerwone krwinki
- erytrocyty
-
(i 9 więcej)
Oznaczone tagami:
-
Znaleziono materiał niemal idealnie pochłaniający światło. Eduard Driessen i Michiel de Dood udowodnili, że warstwa azotku niobu (NbN) o grubości zaledwie 4,5 nanometra pochłania około 100% padającego nań światła. Dotychczas główny problem z materiałami mogącymi potencjalnie pochłaniać dużo światła polegał na tym, że są one dobrymi lustrami dla światła, które na nie bezpośrednio pada. Dobrze pochłaniają światło odbite. Z kolei ilość światła odbitego i absorbowanego zależy od kąta jego padania i polaryzacji. Jakby przeszkód było mało, istnieją dwa rodzaje polaryzacji - s i p. Badania nad NbN wykazały, że materiał najlepiej sprawuje się, gdy światło spolaryzowane typu s pada nań pod kątem 35 stopni. Wówczas pochłaniane jest w 94%, a światło typu p jest całkowicie odbijane. Jednak gdy zmienimy właściwości światła tak, by padało ono pod kątem 46 stopni, to absorpcja dla obu rodzajów polaryzacji wynosi 80%, co jest rewelacyjnym wynikiem. Dotychczas osiągano wyniki nie lepsze niż 50%. Odkrycie Driessena i de Dooda pozwoli na skonstruowanie urządzenia, które umożliwi wykrywanie poszczególnych fotonów. Dotychczas było to niemożliwe, gdyż wykorzystywane materiały pochłaniały zbyt mało światła. Co więcej, przeprowadzone obliczenia wykazały, że na pracę takiego czujnika nie ma wpływu długość fali światła. A to z kolei oznacza, że można go będzie zastosować na przykład w telekomunikacji czy urządzeniach działających na podczerwień.
- 3 odpowiedzi
-
- pochłanianie
- polaryzacja
-
(i 3 więcej)
Oznaczone tagami:
-
Słysząc o zanieczyszczeniach, niemal zawsze kojarzymy je jednoznacznie z uwalnianiem szkodliwych chemikaliów do środowiska. Tymczasem do zanieczyszczeń należą też m.in.: nadmierna emisja ciepła i światła oraz hałas. Tym razem, dzięki badaczom z Uniwersytetu Stanu Michigan, dowiadujemy się, że groźna dla środowiska naturalnego jest nie tylko ilość emitowanego przez nas światła, lecz także jego polaryzacja. Zjawisko polaryzacji promieniowania polega na układaniu się jego fal w jednej płaszczyźnie zamiast w wielu, jak ma to miejsce w przypadku typowej emisji. Dzieje się tak np. w wyniku odbicia od płaskich, ciemnych powierzchni, takich jak nawierzchnia dróg. Okazuje się, że powstające w ten sposób światło znacznie odbiega swoimi właściwościami od światła padającego na daną powierzchnię i może np. wabić niektóre zwierzęta do miast. W środowisku naturalnym najważniejszym źródłem polaryzacji światła jest jego odbicie od wody, lecz nawet ona zmienia charakterystykę fal znacznie słabiej od wytworów przemysłu. Samochody, asfalt, zbiorniki ropy i okna polaryzują światło silniej, niż woda, wyjaśnia Bruce Robertson, jeden z autorów studium. Jak tłumaczy badacz, obiekty te przypominają wodę bardziej, niż sama woda. Efekt? "Uporządkowane" fale świetlne wabią owady i skłaniają je do składania jaj w miejscach, które jedynie wydają się być wodą, choć w rzeczywistości mogą znajdować się daleko od jakiegokolwiek akwenu. Zespół Robertsona zidentyfikował co najmniej 300 gatunków wodnych insektów, których tryb życia może zostać poważnie zakłócony przez światło spolaryzowane pochodzenia ludzkiego. Większość z nich potrzebuje obecności zbiorników wodnych do składania jaj, lecz "zanieczyszczenie światłem" powoduje, że potomstwo traci jakiekolwiek szanse na przyjście na świat z powodu nienaturalnych warunków rozrodu. Problemy nie kończą się na owadach. Badacze z Michigan zaobserwowali, że w ślad za zmylonymi insektami podążają żywiące się nimi ptaki, które coraz częściej obserwuje się w miejscach zwykle przez nie omijanych. Dodatkowym problemem jest fakt, iż wywabienie insektów z wody może spowodować zmniejszenie zasobów pożywienia m.in. dla niektórych gatunków ryb i płazów. Na szczęście, jak tłumaczy Roberts, istnieje prosty sposób na ograniczenie emisji światła spolaryzowanego. Wystarczy na przykład dodawać więcej żwiru do mas bitumicznych, którymi wykłada się ulice, lub zmienić nieco skład chemiczny materiałów używanych do wykładania na elewacjach budynków. Pozostaje jednak jeden, podstawowy problem: czy ludzie zdobędą się na takie zmiany w imię ochrony przyrody?
- 5 odpowiedzi