Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów 'pigment' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 7 wyników

  1. Niewykluczone, że naukowcom uda się zapobiec siwieniu, jednej z najbardziej widocznych oznak starzenia. Specjaliści z NYU Langone Medical Center odkryli bowiem, że szlak sygnałowy Wnt, znany z kontrolowania wielu procesów biologicznych, odpowiada też za komunikację między mieszkami włosowymi a komórkami macierzystymi melanocytów. Może w ten sposób regulować pigmentację włosów. Od dziesięcioleci wiedzieliśmy, że komórki macierzyste mieszków włosowych i wytwarzających pigment melanocytów współpracują, by wytworzyć zabarwiony włos, ale nie mieliśmy pojęcia dlaczego [i jak]. Odkryliśmy, że szlak sygnałowy Wnt jest niezbędny do kontrolowania działania tych dwóch linii komórek macierzystych i pigmentacji włosów - wyjaśnia dr Mayumi Ito, szefowa zespołu badawczego. Amerykanie uważają, że manipulując szlakiem Wnt, będzie można odwrócić siwienie lub mu zapobiec. Ich badania mogą także posłużyć jako model regeneracji tkanek. Ludzkie ciało dysponuje wieloma typami komórek macierzystych, które potencjalnie mogą regenerować [...] narządy. Mechanizmy stojące za komunikacją komórek macierzystych włosów i kontrolowaniem ich koloru podczas wymiany mogą dostarczyć wskazówek dot. regeneracji złożonych organów, zbudowanych z wielu różnych rodzajów komórek. Pracując na modelu mysim, akademicy wykazali, że wyeliminowanie szlaku Wnt (zahamowanie lub działanie odbiegające od normy) w mieszkach włosowych nie dopuszcza do odrostu włosów oraz niezbędnej do zabarwienia włosów aktywacji melanocytów. Studium doktor Ito stanowi dowód na to, że zachowanie melanocytów jest związane z regeneracją włosów. Pozwala zrozumieć nie tylko siwienie, ale i chorobę polegającą na niekontrolowanym wzroście melanocytów - czerniaka.
  2. Przypadkowe odkrycie dokonane na Oregon State University (OSU) rozwiązało problem, z którym ludzkość nie potrafiła poradzić sobie od tysięcy lat. Zarówno starożytni Egipcjanie, jak i Chińczycy czy Majowie szukali sposobu na wyprodukowanie trwałego, bezpiecznego niebieskiego barwnika. Jednak wszystko co wynaleziono, miało poważne wady. Błękit kobaltowy ma działanie rakotwórcze, błękit pruski uwalnia trujący cyjanek, a inne barwniki szybko niszczeją, gdy są wystawione na działanie wysokich temperatur lub kwasów. Teraz udało się znaleźć błękit, który wytrzymuje niezwykle wysokie temperatury i nie blaknie po tygodniowej kąpieli w kwasie. To było przypadkowe odkrycie - mówi profesor Mas Subramanian z Wydziału Chemii OSU. Badaliśmy tlenki manganu, gdyż interesowały nas ich pewne właściwości. Mogą być one bowiem jednocześnie ferromagnetykami i ferroelektrykami. Nasze prace nie miały nic wspólnego z badaniem pigmentów. Pewnego dnia jeden ze studentów wyjął z gorącego pieca próbki. Akurat obok przechodziłem i zobaczyłem, że mają piękny błękitny kolor. Od razu zdałem sobie sprawę z tego, że stało się coś zadziwiającego. Dalsze badania wykazały, że podgrzanie tlenków manganu do temperatury 1200 stopni Celsjusza pozwala na uzyskanie trwałego, bezpiecznego dla człowieka i środowiska, błękitnego barwnika, który jest tani, wytrzymuje wysokie temperatury i oddziaływanie kwasów. Wskutek niezwykle wysokiej temperatury jony manganu zorganizowały się w kształty, które dały błękitny kolor. Nowy pigment może być używany dosłownie wszędzie. Od atramentów dla drukarek, poprzez lakiery samochodowe po farby używane w domach.
  3. Popularny barwnik spożywczy może okazać się skutecznym lekiem zapobiegającym uszkodzeniom rdzenia kręgowego - twierdzą naukowcy z Rochester Medical Center. O ich odkryciu poinformowało czasopismo Proceedings of the National Academy of Sciences. Związkiem, który może odegrać centralną rolę w zapobieganiu zniszczeniom neuronów rdzenia kręgowego towarzyszącym np. wypadkom komunikacyjnym, jest Brilliant Blue G (BBG) - niebieski pigment stosowany m.in. jako dodatek do cukierków i napojów. Jak wykazał zespół dr. Maikena Nedergaarda, substancja ta skutecznie neutralizuje szkodliwe działanie jednego ze związków pojawiających się w miejscu naruszenia ciągłości rdzenia i przyśpieszających uszkodzenie znajdujących się w pobliżu włókien nerwowych. Badania, których efektem było odkrycie dobroczynnych właściwości BBG, rozpoczęły się 5 lat temu. Badacze z University of Rochester zaobserwowali wówczas, że w miejscu uszkodzenia rdzenia kręgowego błyskawicznie wzrasta poziom ATP - związku, który w zdrowej komórce pełni funkcję nośnika energii chemicznej, lecz w przypadku urazu bierze aktywny udział w niszczeniu komórek znajdujących się w okolicy miejsca uszkodzenia. Odkrycie szybko doprowadziło do odnalezienia sposobu na ochronę komórek rdzenia kręgowego. Jak wykazano w badaniach na szczurach, nadawała się do tego utleniona forma ATP. Co prawda skutecznie chroniła ona neurony przed uszkodzeniem, lecz było to rozwiązanie dalekie od idealnego. Po pierwsze, nikt nie chciałby umieścić igły wewnątrz poważnie uszkodzonego niewiele wcześniej rdzenia kręgowego (...). Po drugie, związek użyty przez nas na początku, czyli utleniony ATP, nie może być podany do krwiobiegu ze względu na niebezpieczne efekty uboczne - zauważa dr Nedergaard. Szybko stało się oczywiste, że konieczne jest znalezienie związku, który można podać szybko i bezpiecznie drogą dożylną. Poszukiwania substancji zdolnej do hamowania szkodliwej aktywnosci ATP doprowadziły do "namierzenia" dwóch bardzo podobnych strukturalnie związków: wspomnianego wcześniej BBG oraz innego barwnika spożywczego, zwanego Brilliant Blue FCF. Jak wykazały testy na zwierzętach, dożylne podanie BBG skutecznie chroni neurony przed uszkodzeniem wywołanym przez uraz rdzenia kręgowego. Szczury leczone tym popularnym pigmentem w znacznym stopniu odzyskały zdolność do poruszania się, a zastosowane leczenie nie wywoływało poważnych efektów ubocznych. W rzeczywistości jedynym działaniem niepożądanym "błękitnego leku" było wywołanie tymczasowego zabarwienia skóry, związane z zastosowaniem dawki wielokrotnie wyższej, niż w produktach spożywczych. Choć BBG jest związkiem stosowanym w przemyśle spożywczym od lat, nie ma pewności, czy jego stosowanie w podwyższonych dawkach byłoby bezpieczne. Oznacza to konieczność przeprowadzenia dodatkowych badań, lecz samo odkrycie ochronnych właściwości popularnego barwnika napawa optymizmem.
  4. Niektórzy mówią (a inni śpiewają), że nic dwa razy się nie zdarza. Pewnie jest w tym sporo prawdy, ale czy to samo powiedzenie ma rację bytu w biologii? Badacze z Uniwersytetu Kalifornijskiego postanowili to sprawdzić. Badania przeprowadzone na amerykańskiej uczelni są niczym innym, jak unowocześnioną wersją eksperymentów prowadzonych w XIX wieku przez Grzegorza Mendla, pioniera genetyki. Tym razem jednak, zamiast oceniać wyłącznie wygląd badanych roslin, naukowcy wykorzystali testy genetyczne pozwalające na śledzenie ewolucji niemal w czasie rzeczywistym. Obiektem studium był orlik - roślina wieloletnia z rodzaju Aquilegia. Charakterystyczną cechą tego organizmu jest wytwarzanie kwiatów w jednym z dwóch kolorów: czerwonym oraz białawo-żółtym. Pociąga to za sobą ogromne konsekwencje, gdyż jaskrawe kwiaty są zapylane niemal wyłącznie przez kolibry, zaś te bardziej płowe - przez motyle z rodziny zawisakowatych (Sphingidae). Nieco wcześniej wykazano, że liczebność motyli oraz kolibrów wywiera istotny wpływ na zmianę koloru kwiatów orlika. Wiąże się to ze zjawiskiem selekcji naturalnej - rośliny wytwarzające kwiaty "dopasowane" do preferencji zwierząt będą rozwijały się szybciej od konkurentów. Bardzo podobnie wygląda kwestia zmiany kształtu kwiatów w reakcji na kształty aparatów gębowych owadów oraz ptasich dziobów. Co ważne, zarówno zmiana barwy, jak i kształtu kwiatów jest z punktu widzenia populacji odwracalna i po upływie dostatecznie długiego czasu wygląd roślin powraca do stanu sprzed mutacji. Teraz naukowcy postanowili pójść o krok dalej. Dzięki badaniom z zakresu genomiki zidentyfikowali 34 geny biorące udział w wytwarzaniu poszczególnych barwników. Do zbadania pozostaje więc "tylko" sekwencja mutacji utrwalanych w populacji pod wpływem zmian w otoczeniu. Mówiąc najprościej, badacze chcą sprawdzić, czy za każdym razem orlik będzie ewoluował w identyczny sposób, tzn. na drodze mutacji w tych samych genach. Ostatecznie chcemy wiedzieć, czy ewolucja może być przewidywalna, tłumaczy prof. Scott A. Hodges, kierownik badań. Wiedza zdobyta dzięki wysiłkom jego zespołu może mieć niebagatelne znaczenie dla lepszego zrozumienia procesów adaptacji organizmów żywych do warunków środowiska.
  5. Partenon kojarzy się wszystkim z lśniącą bielą budowlą. Po raz pierwszy udało się jednak znaleźć dowody, że zgromadzone tam rzeźby pokryto kolorowymi farbami. Świątynia Ateny Partenos została wzniesiona na ateńskim Akropolu w V w. p.n.e (447–432 r.) przez Iktinosa i Kallikratesa. Tamtejsze rzeźby i fryzy przedstawiają sceny z mitologii. Inne greckie posągi czy świątynie pokrywano pigmentami, lecz tutaj – mimo 200 lat poszukiwań – nie natrafiono dotąd na najdrobniejszy ich ślad. Giovanni Verri, badacz z Bristish Museum w Londynie, wziął się więc na sposób i opracował technikę obrazowania, która jest szczególnie wrażliwa na pozostałości starożytnego pigmentu – błękitu egipskiego. Był to barwnik syntetyczny (najstarszy ze znanych), ponieważ produkowano go metodami chemicznymi. W wysokiej temperaturze, która nie mogła przekroczyć tysiąca stopni Celsjusza, pozyskiwano ziarna szklistej substancji – kuproriwaitytu (CaCuSi4O10). Metoda Verriego jest prosta. Na marmur pentelicki należy skierować wiązkę czerwonego światła. Jeśli na materiale znajduje się farba, zaabsorbuje je i będzie emitować światło podczerwone. Dzięki temu w kamerze na podczerwień fragmenty rzeźb, niegdyś błękitne, będą się charakterystycznie jarzyć. Stąd wiadomo, że Iris, córka Taumasa i nimfy Elektry, posłanka bogów, "nosiła" w przeszłości tunikę przewiązaną cienkim błękitnym paskiem, a na płaszczu Dione także widniały pasy tego koloru. Eksperci z brytyjskiego muzeum uważają, że w starożytności Partenon wyglądał zupełnie inaczej niż dziś. Zachwycał kolorami, najprawdopodobniej błękitem i czerwienią, oraz złoceniami i doskonałej jakości marmurem (lekko żółtawym z powodu obecności drobin żelaza).
  6. Najbardziej oczywistym źródłem kolorów w przyrodzie wydają się być pigmenty. Okazuje się jednak, że niektóre ptaki, takie jak sójki i błękitniki, zawdzięczają barwę swoich piór nanostrukturom utworzonym przez "spienione" białka. Odkrycia dokonał zespół złożony z inżynierów, fizyków oraz biologów ewolucyjnych pracujących na Uniwersytecie Yale. Z przeprowadzonych przez nich analiz wynika, że błękitne ubarwienie skrzydeł niektórych ptaków jest możliwe dzięki tzw. rozdziałowi fazowemu białek i wody. Zdaniem autorów odkrycie może ułatwić prace nad tworzeniem coraz doskonalszych nanostruktur o pożądanych właściwościach optycznych. Proces rozdziału fazowego to nic innego jak rozdzielenie się mieszaniny dwóch lub więcej nierozpuszczających się w sobie substancji, które zostały uprzednio zmieszane ze sobą. Przykładem tego zjawiska może być np. uwalnianie się pęcherzyków CO2 z napoju lub rozwarstwianie się mieszaniny oleju z wodą. W przypadku ptasich piór rozdział fazowy polega na ucieczce pęcherzyków wody z kompleksów białkowych znajdujących się wewnątrz komórek. Powstające wówczas puste przestrzenie są wypełniane powietrzem, zaś proteiny przyjmują formę piany lub gąbki. Ich unikalny rozkład przestrzenny jest niezbędny dla powstania błękitnej barwy piór. Eksperci z Uniwersytetu Yale nie wykluczają, że to dopiero początek odkryć, które pozwolą na zastosowanie wniosków z obserwacji organizmów żywych w nanotechnologii. Zapewniają jednak, że już mają pomysł na uczczenie kolejnych sukcesów. Jak uważa dr Richard Prum, jeden z autorów badania, idealnie nada się do tego inny przykład praktycznego zastosowania rozdziału fazowego: szampan!
  7. Nie ma chyba człowieka, który nie zachwycałby się pięknem kolorowego jedwabiu. Jego farbowanie jest jednak uciążliwe. Japońscy naukowcy wyhodowali więc zmodyfikowane genetycznie jedwabniki, wytwarzające nici określonej barwy. Takashi Sakudoh z Uniwersytetu Tokijskiego podkreśla, że najważniejsze było zrozumienie układu transportu pigmentu u jedwabników. To stanowiło podstawę dla genetycznej manipulacji kolorem oraz zawartością pigmentu. W naturze kokony jedwabników morwowych mają tylko kilka barw. Są białe, żółte, słomkowe, łososiowe, różowe lub zielone. Pigment jest przez owady absorbowany podczas żerowania na liściach morwy. Japończycy zauważyli, że u jedwabników wytwarzających biały oprzęd występuje zmutowany gen Y (gen "żółtej krwi"). Zaobserwowano delecję fragmentu DNA. Zwierzęta potrzebują genu Y do ekstrahowania z liści morwy karotenoidów, czyli żółto-pomarańczowych barwników. Zmutowane owady wytwarzały niefunkcjonalną formę białka wiążącego karotenoidy (białka CBP od ang. carotenoid-binding protein). Posługując się technikami z zakresu inżynierii genetycznej, badacze zastępowali zepsuty gen Y jego prawidłową wersją. Dysponując sprawnym białkiem CBP, jedwabniki mogły uprząść żółtą nić, a jej kolor stawał się wyraźniejszy wskutek kilkakrotnego krzyżowania. Kokony mogą mieć także kolor cielisty (żółtaworóżowy), a nawet czerwonawy — twierdzą autorzy studium w artykule opublikowanym na łamach pisma Proceedings of the National Academy of Sciences of the United States.
×
×
  • Dodaj nową pozycję...