Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów 'mechanoreceptory' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 3 wyniki

  1. Dolna warga jest wrażliwsza od górnej, dlatego to właśnie przede wszystkim jej zawdzięczamy zdolność mówienia, jedzenia czy całowania (Clinical Neurophysiology). Choć na ustach znajduje się ten sam typ receptorów czuciowych co na dłoniach, niewiele wiadomo o ich działaniu. By wypełnić tę lukę, dr Gabrielle Todd z Uniwersytetu Południowej Australii zbadała wrażliwość czuciową ust grupy dorosłych osób. Naukowcy posłużyli się serią krążków z pleksiglasu o średnicy 1,5 cm, na których wycięto rowki. Odstęp między rowkami wynosił od 0,25 do 3,5 mm. Wykorzystano próbniki z 3 typami rowkowania: 1) poziomym (równoległym do ust), 2) pionowym (prostopadłym do warg) oraz 3) ukośnym. Krążki umieszczano na środku każdej z warg. Badanym zakładano przepaskę i proszono o określenie układu linii. Rozpatrując łącznie wszystkie 3 ułożenia rowków, Australijczycy stwierdzili, że próg wrażliwości górnej wargi jest znacznie wyższy (1,5 ± 0,9 mm) od progu dla wargi dolnej (1,0 ± 0,7 mm).Oznacza to, że kontrolując przebieg czynności, mózg w większym stopniu polega na danych z dolnej wargi. Todd zauważyła, że o ile mechanoreceptory w palcach silniej reagują na obiekty prezentowane wzdłuż niż w poprzek palca (dzieje się tak ze względu na zależne od kierunku różnice w elastyczności skóry, sposób wyładowywania receptorów oraz układ linii papilarnych), o tyle w wargach nic takiego się nie dzieje. Różnice w czuciu należy brać pod uwagę planując eksperymenty naukowe, a także podczas terapii mowy czy oceny regeneracji nerwów uszkodzonych np. podczas zabiegów stomatologicznych.
  2. Podczas polowania palczak madagaskarski, zwany też aj-ajem, rozgrzewa swój zakończony hakowatym pazurem długi środkowy palec. Palec ten służy zwierzęciu do opukiwania pni drzew, głównie bambusów, i wydłubywania owadów oraz larw. Zdjęcia termograficzne ujawniły, że normalnie dziwny palec aj-aja jest chłodniejszy od pozostałych, ale podczas żerowania jego temperatura rośnie nawet o 6 stopni Celsjusza. Naukowcy z Darmouth University, studentka Gillian Moritz i nadzorujący jej prace dr Nathaniel Dominy, uważają, że utrzymując niższą temperaturę cienkiego palca, aj-aj oszczędza energię. To uderzające, o ile chłodniejszy był 3. palec, gdy zwierzę go nie używało i jak szybko ogrzewał się, gdy aj-aj aktywnie poszukiwał pokarmu. Sądzimy, że stosunkowo niskie temperatury nieużywanego palca są związane z jego budową. [Jest długi i cienki], co skutkuje dość wysokim stosunkiem powierzchni do objętości, a to utrudnia utrzymanie ciepła - opowiada Moritz. By palec nadawał się do wykonywania swoich zadań i był wrażliwy na drgania, w jego skórze musi się znajdować wiele mechanoreceptorów. Ze względu na zaangażowanie "specjalistycznej aparatury", posługiwanie się środkowym palcem musi być kosztowne z energetycznego punktu widzenia, a przy niższych temperaturach otoczenia, przez gęsto rozmieszczone receptory ucieka sporo ciepła. Moritz podaje 2 wyjaśnienia, w jaki sposób palczak madagaskarski reguluje ciepłotę palca. Pierwsza teoria bazuje na rozszerzaniu i kurczeniu naczyń, które dostarczają do niego krew. Druga hipoteza, również związana z naczyniami, jest taka, że chroniąc wyjątkowo długi palec przed uszkodzeniami, podczas poruszania się i w okresach nieaktywności aj-aj wygina go mocno do tyłu. Prowadzi to do zaciśnięcia tętnicy, a ponieważ dopływa mniej krwi, temperatura palca spada. W ramach studium Amerykanie obserwowali podczas różnych czynności 8 palczaków madagaskarskich. Okazało się, że gdy staw śródręczno-paliczkowy rozciągał się wskutek odginania nieużywanego "przyrządu", temperatura wydłużonego palca była, w porównaniu do innych palców, niższa o ok. 2,3 st. Celsjusza. Kiedy staw zginał się podczas opukiwania, ogrzewał się średnio o 2 stopnie. Podczas gdy temperatura innych palców pozostawała niezmienna, ciepłota wyspecjalizowanego palca zmieniała się czasem nawet o 6 stopni.
  3. Skąd owady, np. chrząszcze, wiedzą, kiedy przyszedł czas na wyczyszczenie stóp, które pozwalają im na wspinanie się po różnie ukształtowanych powierzchniach? Wskazówką jest spadek tarcia. Wydaje się, że odkrycie ma znaczenie wyłącznie dla entomologów, ale to nieprawda. Z nowych danych skorzystają zapewne także robotycy oraz naukowcy pracujący na metodami pomiaru skażenia (Proceedings of the Royal Society B). Odnóża owadów pokrywają często sety, zwane przeważnie po prostu włoskami. Są one jednokomórkowymi tworami, uformowanymi przez komórki naskórka. Wytwarzają substancję, która nie jest lepka, ale zwiększa przyciąganie międzycząsteczkowe. Świadome tego rośliny bronią się lub wykorzystują opisane zjawisko na swoją korzyść, zaburzając działanie włosków za pomocą brudzących stopy kryształów wosku. Dobrym przykładem są np. dzbaneczniki, których wosk sprawia, że owady zsuwają się po liściach pułapkowych i wpadają wprost do płynu trawiennego. Owady nie pozostają dłużne i mają własne zabezpieczenia przed trikami roślin. Chrząszcze dysponują np. umieszczonymi na odnóżach specjalnymi grzebieniopodobnymi strukturami. Jak podkreśla główny autor opisywanych badań Stanislav Gorb z Uniwersytetu Christiana-Albrechta w Kilonii, należało jeszcze odpowiedzieć na pytanie, skąd zwierzęta wiedzą, kiedy ich użyć? Niemcy przeprowadzili eksperyment z 6 chrząszczami z rodziny stonkowatych. Umieszczali je na krzemowo-glinowych powierzchniach o różnych poziomach szorstkości. Na początku znieczulali jednak owady za pomocą dwutlenku węgla i umieszczali na ich grzbiecie kroplę stopionego wosku pszczelego, przyklejając w ten sposób do szkieletu zewnętrznego ludzki włos. Gdy tylko owady się budziły, naukowcy przymocowywali do włosa urządzenie do pomiaru siły tarcia. Gorb wyjaśnia, że jego zespół zdecydował się na wykorzystanie właśnie chrząszczy, ponieważ odznaczają się sporym uporem i kiedy już zaczną iść, nie ustają przez długi czas i zawsze przemieszczają się w jednym kierunku. Przy tak chętnie współpracujących ochotnikach naukowcom pozostało jedynie obserwować, jak często czyszczone są stopy. Okazało się, że na powierzchniach, które generowały mniejsze siły tarcia, owady dużo częściej angażowały się w czynności higieniczne. Na tej podstawie Niemcy zaczęli przypuszczać, że natura wyposażyła chrząszcze w mechanoreceptory. Najprawdopodobniej znajdują się one w stawach. Na stosunkowo śliskich powierzchniach stonkowate cały czas czyściły stopy, mimo że w rzeczywistości w ciągu całego eksperymentu nigdy nie ulegały zabrudzeniu. Oznacza to, że poza tarciem do układu nerwowego nie dociera żaden inny sygnał wskazujący na stan nóg. Nie mogą bezpośrednio zebrać informacji o zanieczyszczeniu. Udaje im się to wyłącznie przez kontakt i przyłożenie siły do stopy. W przyszłości naukowcy zamierzają sprawdzić, czy u innych owadów występują podobne przystosowania i gdzie znajdują się receptory.
×
×
  • Dodaj nową pozycję...