Znajdź zawartość
Wyświetlanie wyników dla tagów 'ludzki wirus cytomegalii' .
Znaleziono 2 wyniki
-
Jedną z podstawowych strategii pozwalających wirusom na przeprowadzenie skutecznej infekcji jest przyśpieszanie metabolizmu komórek. Czy oznacza to, że podawanie leków zmniejszających aktywność komórek pozwoli na pokonanie wielu infekcji? Badacze z University of Rochester twierdzą, że jest to bardzo możliwe. Liczne wirusy, wśród nich te najistotniejsze z punktu widzenia medycyny, jak HIV czy wirus zapalenia wątroby typu B, używają tych samych związków do budowy własnych cząstek. Zdaniem angielskich badaczy może to oznaczać, że blokowanie syntezy tych składników może skutecznie powstrzymywać zakażenie. Prawdopodobnie najbardziej efektywnym celem takiej terapii byłoby tymczasowe blokowanie wytwarzania przez komórkę wytwarzania niektórych kwasów tłuszczowych, którymi liczne wirusy otaczają się pod koniec procesu namnażania. Dotychczas nie było jednak dokładnie wiadomo, w jaki sposób wirusy "zmuszają" komórkę do produkowania potrzebnych im substancji. Najnowsze badania, opublikowane przez czasopismo Nature Biotechnology, wykorzystywały techniki pozwalające na śledzenie zmian stężeń poszczególnych substancji wewnątrz komórki. Nowej dziedzinie badań nadano nawet własną nazwę "fluksomika" (od ang. flux - przepływ, w tym wypadku: przepływ materii i energii w komórce). Dla naukowców z Rochester szczególnie istotna była analiza tempa przemiany glukozy w kwasy tłuszczowe potrzebne do syntezy nowych cząstek wirusowych. Dzięki zastosowaniu nowych technik fluksomiki nasze badanie pokazuje, iż podczas infekcji wirus przejmuje kontrolę nad metabolizmem komórkowym i wywołuje, obok innych procesów, wyraźne zwiększenie syntezy kwasów tłuszczowych, tłumaczy badacz związany z projektem, dr Joshua Munger. Dodaje: odkryliśmy także, że jeśli zwalcza się to ożywienie metabolizmu kwasów tłuszczowych dzięki istniejącym lekom przeciw otyłości oraz substancjom spowalniającym metabolizm, spowalnia się replikację wirusów. Munger i jego koledzy opracowali technikę, która pozwala na ocenę zmian biochemicznych w komórce poddanej infekcji ludzkim wirusem cytomegalii (ang. Human Cytomegalovirus - HCMV). Mikroorganizm ten należy do najczęściej atakujących człowieka wirusów i może powodować poważne komplikacje, jeśli gospodarz cierpi na zaburzenia odporności. Co więcej, HCMV atakuje liczne typy komórek, co czyni go atrakcyjnym celem do badań. Aby zbadać "przepływ metaboliczny" zainfekowanych komórek, naukowcy zsyntetyzowali cząsteczki glukozy wyznakowane radioaktywnym izotopem. Są one zużywane przez komórkę identycznie ze "zwykłą" glukozą, lecz zastosowanie odpowiednich metod analitycznych pozwala śledzić ich los po pochłonięciu przez komórki. W tym celu zastosowano spektroskopię masową, pozwalającą na wykrywanie niewielkich zmian masy cząsteczek (wynikają one z faktu, iż izotop radioaktywny ma inną masę, niż jego stabilny odpowiednik) oraz chromatografię cieczową, polegającą na rozdzieleniu poszczególnych związków ze względu na łatwość, z jaką rozpuszczają się w określonym rozpuszczalniku i migrują w jego roztworze. Obie techniki umożliwiły zbadanie, do jakich związków zostały włączone izotopy pierwotnie wchodzące w skład glukozy. Pozwoliło to na zdefiniowanie zmian w metabolizmie, którym poddawane są komórki zaatakowane przez wirusa. Ponieważ synteza koniecznych dla mikroorganizmu kwasów tłuszczowych nie jest stale niezbędna dla ludzkich komórek, badacze postanowili ocenić, w jaki sposób blokada tej reakcji wpłynie na intensywność replikacji wirusa. Wykorzystano w tym celu leki obniżające poziom cholesterolu, blokujące dwa ważne enzymy odpowiedzialne także za syntezę kwasów tłuszczowych: karboksylazę acetylokoenzymu A oraz syntazę kwasów tłuszczowych. W pierwszym przypadku osiągnięto aż tysiąckrotne obniżenie szybkości replikacji wirusa, zaś drugi lek spowolnił ten proces do zaledwie 1% jego normalnej wydajności. Podobne wyniki uzyskano w przypadku innych wirusów otaczających się tłuszczową otoczką, takich jak wirus grypy. Wyniki eksperymentu bez wątpienia sa interesujące, lecz wymagają przeprowadzenia dalszych testów klinicznych. Dotychczasowe analizy nie wskazują na występowanie jakiegokolwiek niebezpieczeństwa związanego z terapią, lecz należy pamiętać, iż przeprowadzono je w warunkach laboratoryjnych na bardzo ograniczonej puli komórek. Istnieje jednak nadzieja, że nowa terapia znajdzie zastosowanie w leczeniu infekcji licznymi mikroorganizmami, w tym niektórymi z najgroźniejszych dla człowieka wirusów, jak HIV czy wirus zapalenia wątroby typu B.
-
Ludzki wirus cytomegalii (HCMV - od ang. Human Cytomegalovirus), odpowiedzialny m.in. za rozwój mononukleozy zakaźnej, należy do najczęściej występujących w populacji ludzkiej czynników zakaźnych. Bezpośrednią obecność wirusa lub ślady "pamięci" o zetknięciu z nim w ciągu życia można zaobserwować u 50%, a niektórzy badacze donoszą nawet, że u 80% przedstawicieli ludzkiej populacji. Zakażenie nim nie jest szczególnie groźne (często nie wywołuje żadnych objawów), choć w skrajnych przypadkach może on powodować np. powstanie nowotworu lub nawet śmierć. Do tej pory nie było jednak wiadomo, w jaki sposób dochodzi do powstania zaburzeń w funkcjonowaniu komórek pod jego wpływem. Dopiero wykonane niedawno na Uniwersytecie Wisconsin badania rzucają nowe światło na funkcjonowanie tego wirusa, który okazał się wyjątkowo przebiegłym naśladowcą ludzkich białek. Jedna z produkowanych przez HCMV protein, UL97, ma zdolność do zaburzania naturalnego mechanizmu regulacji intensywności podziałów ludzkich komórek. Potrafi ona blokować czynniki odpowiedzialne za spowolnienie szybkości tego procesu, co w skrajnym przypadku może prowadzić np. do rozwoju nowotworu. Dzieje się tak, ponieważ białko to naśladuje swoim kształtem niezwykle istotny regulator cyklu komórkowego - białko Rb (nazwa pochodzi od słowa retinoblastoma, czyli siatkówczak - jest to nowotwór, który rozwija się najczęściej u bardzo młodych dzieci w wyniku wadliwego działania tej proteiny). Upośledzenie funkcji tego "molekularnego hamulca", powstrzymującego nadmierne podziały komórkowe, prowadzi do zbyt intensywnego namnażania komórek. Wirus osiąga wyraźne korzyści z zaburzenia funkcji komórek gospodarza. Przyśpieszenie cyklu komórkowego wiąże się ze zwiększeniem szybkości syntezy wielu istotnych cząsteczek, w tym DNA. HCMV "wykorzystuje" ten fakt i przechodzi bardziej intensywną replikację wtedy, gdy sama komórka także się dzieli. Wchodzące w skład HCMV UL97 jest białkiem, które naśladuje naturalny regulator cyklu komórkowego, lecz, w przeciwieństwie do niego, pozbawione jest mechanizmów umożliwiających ograniczenie jego aktywności przez gospodarza. Można to porównać do wciśnięcia w samochodzie pedału gazu i jednoczesnego uszkodzenia hamulca. Prof. Robert Kalejta, główny autor badań, komentuje odkrycie: Wirusy są sprytniejsze od nas. Wiedzą o naszych komórkach o wiele więcej niż my, bo są od nich zależne - są bezwzględnymi pasożytami wewnątrzkomórkowymi. Jeżeli atakują jakąś część komórki, czyli proces lub białko, to na pewno jest ona ważna dla komórki. Skoro wirus zwraca na tę część uwagę, my także powinniśmy. Naukowiec wierzy, że dokonane przez jego zespół odkrycie pomoże w odnalezieniu innych protein, które wspólnie z Rb regulują cykl komórkowy. Wierzy także w zastosowanie zdobytej wiedzy w medycynie. Od dawna wiadomo bowiem, że HCMV, najczęściej niegroźny, może w niektórych przypadkach powodować rozwój nowotworów lub innych problemów zdrowotnych. Najczęściej ma to miejsce w przypadku nosicieli, u których doszło do osłabienia funkcji układu odpornościowego. Do grupy tej należą m.in. chorzy na AIDS oraz biorcy przeszczepów. Zdaniem profesora, wykonane badania mogą przynieść dwojaką korzyść. Badamy wirusa, który powoduje u ludzi chorobę, dzięki czemu możemy odkryć sposób na wyleczenie tej infekcji i pomóc w ten sposób pacjentom. Jednocześnie zdobywamy wiedzę na temat działania komórki, co może pomóc nawet osobom, które nie są zainfekowane. Badacz żartobiliwie porównuje to do promocji w supermarkecie: Dostajesz dwa za cenę jednego. Szczegółowe dane na temat odkrycia opublikowano w najnowszym numerze czasopisma Science.