Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów 'lignoceluloza' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 2 wyniki

  1. Wiele firm pracuje nad tworzywami, które byłyby równie lekkie i odporne jak plastik, a przy tym w pełni biodegradowalne. A co, gdyby można je robić... ze śmieci? Nowoczesna,ekologiczna, bo bezodpadowa (konwersja surowiec-produkt sięga 100%) i ekonomiczna (nie wymaga wysokich temperatur ani kosztownych katalizatorów) metoda uzyskiwania organicznych monomerów powstaje właśnie w IChF PAN. Bez tworzyw sztucznych nie sposób w zasadzie wyobrazić sobie współczesnego świata, ale plastik, jakim go dziś znamy, jest zarazem wielkim zagrożeniem. Zaśmieca dosłownie każdy zakątek świata, znajdziemy go w głębi Rowu Mariańskiego i na Mt. Evereście. Każdy z nas – chcąc nie chcąc – zjada podobno co tydzień 5 gramów plastiku, tyle, ile wystarczyłoby na kartę kredytową, a nie są to związki obojętne dla zdrowia A co, gdyby udało się zastąpić plastik tworzywem równie lekkim, równie odpornym, a przy tym w pełni biodegradowalnym? To idea, nad którą pracuje zespół naukowców z IChF, pod kierunkiem prof. Juana Carlosa Colmenaresa. Na warsztat wzięli pospolity produkt – hydroksymetylofurfural (HMF) – który na skalę przemysłową otrzymuje się w wyniku kwasowej hydrolizy cukrów otrzymywanych m.in. z celulozy, ligniny czy inuliny. Przekształcili go w aldehyd, 2,5-diformylofurfural (DFF), związek, który znajduje zastosowanie w tak wielu dziedzinach przemysłu, że trzeba by paru linijek, żeby je wszystkie wymienić. Można go wykorzystać do produkcji leków, kosmetyków, zapachów, środków chemicznych, paliw, ale przede wszystkim – przyjaznego środowisku plastiku. Chcemy, żeby można było zastąpić PETy czymś, co rozkładałoby się kilka miesięcy, najwyżej kilka lat, objaśnia prof. Colmenares. Dzisiejsze plastiki, tworzone z ropy naftowej zawierają ftalany i inne plastyfikatory, taką „zupę” związków organicznych, a nawet nieorganicznych, i żadna bakteria ani grzybek ich nie rozkłada sam z siebie. Dlatego tak długo zalegają w lasach i morzach. W tworzywach wyprodukowanych na bazie DFF są furany – cukry, a to, co przychodzi z przyrody, przyroda lepiej przyjmuje, tłumaczy dalej profesor. Były już testy takich polimerów. Rozkładają się one do monomerów przypominających cukry. A cukry to łakomy kąsek dla wielu mikroorganizmów. Nawet, gdyby butelkę z takiego tworzywa wyrzucić do lasu, to się rozłoży o wiele szybciej niż konwencjonalne polimery, najdalej po paru latach. Nie sam produkt (DFF) jednak jest tu nowością, lecz metoda jego uzyskiwania, opisana w pracy opublikowanej w Applied Cat. B. Do tej pory potrzeba do tego wysokich temperatur (rzędu 100-150 st. C) i skomplikowanej technologii, co sprawiało, że choć ekologiczny, nie mógł konkurować z produktami z ropy naftowej. Zespołowi prof. Colmenaresa wystarcza skonstruowana przez nich puszka – fotoreaktor, światło (na razie to lampy LED emitujące bliskie UV – 375 nm, ale docelowo energii ma dostarczać po prostu słońce) i katalizator, którym są nanopręciki ditlenku manganu. Są długie i bardzo, bardzo cienkie, a ich budowa zwiększa absorpcję światła. Dzięki unikatowym właściwościom termo-foto-katalitycznym ditlenku manganunanopręciki mają o wiele większą powierzchnię kontaktu z cząsteczkami materiału wyjściowego i lepiej go aktywują.Tak, że praktycznie cały HMF zmienia się w DFF. 100%!, ekscytuje się profesor. Jest to metoda bezodpadowa, bez dodatku tlenu i dodatkowych związków (np. nadtlenku wodoru H2O2). Wystarczy tlen z powietrza, by uzyskać czysty monomer potrzebny do produkcji polimerów liniowych i... np. takich butelek. Nawet nanopręciki można wykorzystywać wielokrotnie jako fotokatalizator, bo DFF ich nie niszczy, nie uwalnia jonów manganu 2+ i 4+, dzięki czemu nie trzeba go też oczyszczać. Temperatura może być pokojowa a ciśnienie –atmosferyczne. Jest to przy tym bardzo tani i powszechny materiał (tlenek manganu to nie jest platyna, złoto czy srebro), a i metoda produkcji  jest prosta. One się po prostu wytrącają i wystarczy dobrać odpowiednie warunki, żeby proces był wydajny, opowiada o wynalazku prof. Colmenares. Teraz ogranicza nas pojemność reaktora, ale gdy zmienimy go w przepływowy, będziemy mogli sporo zwiększyć produkcję. No i uzyskać patent, dodaje. A czy taki szybko rozkładający się plastik nie rozłoży się za szybko? Zanim np. zdążymy wypić nalany do niego sok? Nie, śmieje się profesor, praktycznie potrzeba do rozkładu kilku lat, ale gdyby nawet reakcja zaszła szybciej, to użytkownik najwyżej napiłby się troszkę „dobrego” plastiku. Takiego, który jest nieszkodliwy dla organizmu. Zostałby po prostu zdegradowany przez nasze jelitowe bakterie i ich enzymy. Do tego metoda opracowana przez zespół pod kierunkiem profesora Colmenaresa wykorzystuje... śmieci. Coś, co w przeciwnym razie trafiałoby np. do rzek zatruwając wodę, albo wymagałoby dużych nakładów w zakresie oczyszczania, jak to jest obecnie z odpadami przemysłu papierniczego. Obecnie z takich odpadów można robić np. bioetanol, albo spalać je, żeby dostarczyć energii dla własnej produkcji, ale gdyby udało się je wykorzystać lepiej, byłaby to niesamowita rzecz. Zresztą, odpadów starczy na wszystko. A gdyby pokazać, że można na tym zarobić, zaraz znalazłoby się wielu ludzi do ich sprzątania, mówi profesor. Polska jest np. wielkim producentem jabłek i soku, ale czy wiemy, co się dzieje z tymi wszystkimi skórkami i odpadkami? Niewiele, choć co roku „produkujemy” tego setki ton. To się wylewa do ścieków, to zanieczyszcza wodę, zabiera tlen, a wtedy koniec z całym wodnym życiem, martwi się profesor. Tymczasem tam są wszystkie cukrowate, pektynowe, lewulinowe związki, z których można wytwarzać nawet lekarstwa. Można wytwarzać bardzo pożądane związki z czegoś, co nie jest z ropy ani z węgla, tylko z odpadów. To jest hasło „jak zrobić coś z niczego”. « powrót do artykułu
  2. Naukowcy z University of Cambridge odkryli enzymy roślinne, których działanie znacznie utrudnia pozyskanie energii przechowywanej w drzewach, słomie i innych niejadalnych częściach roślin. Odkrycie to daje nadzieję na produkcję biopaliw, które nie będą negatywnie wpływały na rynek żywności. Jedną z głównych wad biopaliw jest bowiem fakt, że większość z nich wytwarzanych jest przez roślin jadalnych, co skutkuje zwiększeniem cen żywności. Brytyjscy uczeni zbadali genom dwóch protein, które utwardzają drewno czy słomę, powodując, że wyekstrahowanie zeń bioetanolu jest bardzo trudne. Dokładne poznanie sposobu działania wspomnianych protein pozwoli na takie zmodyfikowanie ich genomu, by uzyskać niejadalne rośliny o właściwościach ułatwiających pozyskiwanie biopaliw. Dzięki temu produkcja alternatywnego paliwa będzie wymagała użycia mniejszej ilości energii i środków chemicznych niż dotychczas. W drewnie i słomie znajduje się olbrzymia ilość energii zgromadzona w postaci lignocelulozy. Chcieliśmy znaleźć sposób na łatwiejsze pozyskanie tej energii w formie cukrów, które pozwoliłby na przeprowadzenie fermentacji i wyprodukowanie bioetanolu - powiedział główny autor badań, profesor Paul Dupree.
×
×
  • Dodaj nową pozycję...