Znajdź zawartość
Wyświetlanie wyników dla tagów 'kompresja' .
Znaleziono 4 wyniki
-
Podczas spotkania zorganizowanego przez Advanced Research Projects Agency - Energy Norbert Müller z Michigan State University zaprezentował prototyp silnika wykorzystującego fale uderzeniowe do kompresji mieszanki paliwowo-powietrznej. Głównym elementem silnika o roboczej nazwie Wave Disk Engine jest rotor, którego łopatki wraz z bocznymi ściankami tworzą komory promieniście rozłożone wokół środka. Gdy rotor się obraca, mieszanka paliwowo-powietrzna dociera do komór przez centralnie umiejscowione kanały. Jednak nie udaje się jej opuścić komór przez kanały wylotowe, gdyż rotor zdąży się obrócić i wyloty zostają zablokowane przez ścianki boczne rotora. W efekcie w rotorze gwałtownie rośnie ciśnienie i dochodzi do pojawienia się fali uderzeniowej, która kompresuje mieszankę paliwowo-powietrzną. Bezpośrednio przed tym, jak fala uderzeniowa dotrze do centralnych kanałów, rotor zdąży się obrócić i zostają one zamknięte. Wówczas skompresowana mieszanka jest podpalana, a w tym czasie obrót rotora sprawia, że zostają otwarte kanały wylotowe. Dochodzi wtedy do gwałtownego wyrzutu gorących gazów, które obracają łopatki rotora, utrzymując go w ciągłym ruchu, dzięki czemu wytwarza on elektryczność. Projekt Müllera pozwala znakomicie uprościć konwencjonalne silniki, gdyż nie wykorzystuje tłoków, wałka rozrządu i zaworów. Samochód wyposażony w taki silnik może być nawet o 20 procent lżejszy od pojazdu z tradycyjnym silnikiem, a rezygnacja z wielu części mechanicznych powoduje, że zużywa też mniej paliwa. Müller zapewnia, że jego urządzenie świetnie sprawdzi się w pojazdach hybrydowych i może współpracować z różnymi rodzajami paliwa, w tym z wodorem. Müller i jego zespół twierdzą też, że dzięki nowej konstrukcji sprawność silnika może wzrosnąć do 60%. Obecnie silniki spalinowe charakteryzują się sprawnością rzędu 25-40 procent.. Ponadto Wave Disk Engine może o 30% obniżyć cenę samochodu, zmniejszyć emisję dwutlenku węgla o 90% oraz zapewnić pojazdom hybrydowym zasięg rzędu 800 kilometrów. Inżynier na razie przygotował mały prototyp, jednak zapowiada, że jeszcze w bieżącym roku zaprezentuje model o mocy 25 kilowatów.
- 5 odpowiedzi
-
- fala uderzeniowa
- Disk Wave Engine
-
(i 3 więcej)
Oznaczone tagami:
-
W Nature Photonics ukazał się artykuł opisujący działanie "teleskopu czasowego", który może pozwolić na 27-krotne przyspieszenie przesyłania informacji we współczesnych światłowodach. Jego działanie polega na skompresowaniu impulsu światła w jednostce czasu. Generalnie im impuls krótszy, tym więcej informacji można przesłać danym łączem. Obecnie stosowane urządzenia wykorzystują pasmo 10 GHz i kodują w nim informacje. Teoretycznie możliwe jest wysyłanie impulsów o częstotliwościach 100 000 razy większych, jednak obecnie nie jesteśmy w stanie zakodować w nich żadnych informacji. Naukowcy z Cornell University wpadli więc na pomysł "ściskania" 10-gigahercowych impulsów, dzięki czemu możliwe będzie wysłanie większej ich liczby w jednostce czasu, co znakomicie zwiększy przepustowość łącza. Autorzy artykułu proponują wykorzystanie krzemowych falowodów, które działają jak soczewki skupiające na sygnał. Do takiego falowodu trafiają jednocześnie długi, 10-gigahercowy impuls z zakodowanymi danymi i znacznie krótszy impuls lasera niezawierający żadnych informacji. Wskutek oddziaływań z krzemem, dłuższy impuls z danymi zostaje zmuszony do czasowego przybrania właściwości krótszego impulsu. Jego czołowa część zwalnia, a tylna przyspiesza. W efekcie dochodzi do 27-krotnego skompresowania impulsu. Nowa technika ma na razie sporo ograniczeń. Najważniejszym z nich jest ograniczenie długości pakietu, który może zostać poddany takiej kompresji. Obecnie można kompresować dane o długości do 24 bitów, dlatego też, jak powiedział Mark Foster, główny autor badań, konieczne jest wydłużenie czasu, w którym zachodzi kompresja. Ponadto trzeba też opracować odpowiedni system dekompresji. Jednak, jak mówi uczony, technologia jest prosta, a jej zastosowanie wymaga niewielkich nakładów, z pewnością więc będzie rozwijana i zainteresuje się nią przemysł. Można ją też zastosować w chemii i biologii, gdzie pozwoli na szczegółowe badanie błyskawicznie zachodzących procesów, takich jak np. reakcje chemiczne. "Teleskop czasowy" jest tym bardziej obiecujący, że już na początku prac nad nim uzyskano wyjątkowo dobre wyniki.
- 3 odpowiedzi
-
- Mark Foster
- Cornell University
-
(i 5 więcej)
Oznaczone tagami:
-
Mamy duże zaufanie do wskazań naszych zmysłów. O tym, że nie powinno być bezgraniczne, świadczy chociażby fakt, że zdarza nam się ulegać złudzeniom. Zespół Johahna Leunga zaprezentował ostatnio ciekawe zjawisko, a mianowicie ścieśnienie przestrzeni słuchowej w wyniku szybkiego poruszania głową na boki. Oznacza to, że dźwięk wyemitowany tuż przed wykonaniem skrętu zbliża się percepcyjnie do miejsca stanowiącego punkt zakończenia ruchu. Uczestnicy eksperymentu kiwali wyłącznie głową, pozycja reszty ciała się nie zmieniała. Ich zadanie polegało na jak najszybszym poruszaniu głową na boki, w ślad za zapalającym się 30 stopni na prawo lub na lewo światełkiem. Tuż przed rozpoczęciem ruchu głowy z ruchomego głośnika emitowano dźwięk. Głośnik mógł się znajdować w różnej odległości przed lub za źródłem światła. Położenie dźwięku eksperymentalnego porównywano do lokalizacji dźwięku kontrolnego. Okazało się, że ochotnicy konsekwentnie się mylili i stwierdzali, że pierwszy dźwięk znajdował się bliżej punktu zakończenia ruchu, niż był w rzeczywistości. Działo się tak dlatego, iż na chwilę przed obrotem przestrzeń słuchowa zawężała się w kierunku światła. Podobne zjawisko kompresji przestrzeni obserwuje się przed rozpoczęciem szybkich ruchów sakkadowych gałek ocznych (oko wykonuje szybkie ruchy powrotne, sakkady, przed zmianą punktu fiksacji). W tym przypadku naukowcy tłumaczą efekt ściśnięcia "zachowaniem" neuronów. Pole recepcyjne (ang. receptive field), czyli obszar siatkówki, z którego otrzymuje obraz pojedyncza komórka zwojowa, jest uzgadniane z miejscem, gdzie, zgodnie z przewidywaniami, powinien się zakończyć ruch oczu. Wg zespołu Leunga, analogiczne zjawisko zachodzi w obrębie słuchu. Do kompresji przestrzeni słuchowej nie dochodziło, gdy wolontariusze mogli wskazać położenie dźwięku, odwracając ku niemu twarz. Określanie lokalizacji dźwięku w ten sposób, a nie przez porównywanie z położeniem innego dźwięku angażuje prawdopodobnie strumień grzbietowy, czyli system mniej podatny na złudzenia.
- 2 odpowiedzi
-
- przestrzeń słuchowa
- ściśnięcie
-
(i 5 więcej)
Oznaczone tagami:
-
Największy dzięcioł Ameryki Północnej, dzięcioł smugoszyi (Dryocopus pileatus), uderza dziobem w drzewo 20 razy na sekundę z prędkością ok. 24 km/h. Dlaczego nie cierpi po takich wyczynach na ból głowy? Zawdzięcza to mocnym mięśniom, strukturze kości przypominającej gąbkę oraz trzeciej powiece. To właśnie one ochraniają mózg przed urazami. Wskutek silnego uderzenia w głowę następuje pęknięcie naczyń krwionośnych siatkówki lub uszkodzenie nerwów — tłumaczy oftalmolog z Uniwersytetu Kalifornijskiego w Davis, Ivan Schwab. Widząc pacjentów po wypadkach samochodowych, dziwię się, że podobne objawy nie występują u dzięciołów. W tym miejscu warto wspomnieć, że zeszłej jesieni za badania nad bólami głowy u tychże ptaków Schwab dostał tzw. Ig Nobla (nazywanego inaczej anty-Noblem). Wyniki jego dociekań opublikowano jednak w British Journal of Ophthalmology. Nie tylko głowa dzięcioła jest zbudowana w taki sposób, by chronić mózg. Również ciało przejmuje na siebie siłę uderzeń. Na jedną milisekundę przed stuknięciem mięśnie szyi kurczą się, a ptak zamyka trzecią powiekę. Podatne na kompresję kości czaszki amortyzują uderzenie. Zamykanie powieki utrzymuje gałkę oczną we właściwym miejscu, daje też gwarancję, że odpryskujące kawałki drewna nie wpadną do oka. Powieki działają jak pas bezpieczeństwa i nie dopuszczają do wypadnięcia gałki ocznej — tłumaczył serwisowi LiveScience Schwab. Podczas uderzania głową mózgi ptaków pozostają nieruchome. U człowieka po przyłożeniu do czaszki takiej siły mózg poruszałby się w przód i w tył w płynie mózgowo-rdzeniowym. U dzięciołów na dobrą sprawę płyn ten jednak nie występuje.
- 1 odpowiedź
-
- dzięcioł smugoszyi
- Dryocopus pileatus
- (i 11 więcej)