Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów 'kometa' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 18 wyników

  1. Komety to jedna z najstarszych obiektów w Układzie Słonecznym. Te lodowe pozostałości po formowaniu się planet zostały wyrzucone przez grawitację na obrzeża Układu Słonecznego. Ich rezerwuarem jest Obłok Oorta, hipotetyczny obłok materiału znajdującego się w odległości od kilku tysięcy do 100 000 jednostek astronomicznych od Słońca. Tym, co najbardziej przyciąga naszą uwagę w kometach jest ich spektakularny warkocz ciągnący się na wiele milionów kilometrów. Jego źródłem jest jądro komety, składające się z lodu, pyłu i okruchów skalnych. Jądra większości znanych komet liczą kilka lub kilkanaście kilometrów średnicy. Teleskop Hubble'a odkrył właśnie prawdziwego giganta wśród jąder komet – olbrzyma o średnicy około 140 kilometrów. Cometa C/2014 UN271 (Bernardinelli-Bernstein) została odkryta przez Pedro Bernardinellego i Gary'ego Bernsteina w archiwalnych zdjęciach z Dark Energy Survey w Cerro Tololo Inter-American Observatory w Chile. Po raz pierwszy zaobserwowano ją w 2010 roku. A w bieżącym roku naukowcy wykorzystali Teleskop Hubble'a oraz radioteleskopy, by odróżnić jej stałe jądro od otaczającej je chmury pyłu. Okazało się, że mają do czynienia z największym znanym jądrem komety. Obecnie C/2014 UN271znajduje się w odległości mniejszej niż 3,2 miliarda kilometrów od Słońca, a za klika milionów lat ponownie trafi do Obłoku Oorta. Aby uświadomić sobie, z jakim gigantem mamy do czynienia, musimy wiedzieć, że średnica jądra C/2014 UN271 jest około 50-krotnie większa niż średnica typowej komety. Słynna kometa Halleya ma jądro o średnicy 11 kilometrów, zaś jądro komety Hale-Boppa ma 74 km średnicy. Dotychczasową rekordzistką była kometa C/2002 z jądrem o średnicy 96 kilometrów. Teraz zaś mówimy o 140-kilometrowym jądrze. Profesor David Jewitt Uniwersytetu Kalifornijskiego w Los Angeles, współautor badań nad C/2014 UN271 mówi, że ta kometa to wierzchołek góry lodowej olbrzymiego zbioru tysięcy komet znajdujących się w odległych obszarach Układu Słonecznego, które odbijają zbyt mało światła, byśmy mogli je dostrzec. Zawsze podejrzewaliśmy, że ta kometa ma wielkie jądro, gdyż widzimy ją tak jasną z tak dużej odległości. Teraz mamy potwierdzenie. "To niezwykły obiekt, biorąc pod uwagę fakt, jak bardzo jest aktywny w tak dużej odległości od Słońca. Domyślaliśmy się, że jądro może być całkiem duże, ale musieliśmy to potwierdzić, dodaje główny autor artykułu naukowego, Man-To Hui z Uniwersytetu Nauki i Technologii w Taipa w Macau. Naukowcy wykorzystali więc pięć zdjęć wykonanych w styczniu bieżącego roku przez Hubble'a. Głównym problemem było odróżnienie jądra od otaczającego go gazu i pyłu. Kometa jest obecnie zbyt daleko od Ziemi, by można było ten problem rozwiązać wizualnie. Jednak w danych z Hubble'a widać pojaśnienia w miejscu, gdzie znajduje się jądro. Hui i jego zespół stworzyli komputerowy model warkocza komety, który pasował do obrazów z Hubble'a. Następnie poświatę z warkocza odjęto od całości, pozostawiając samo tylko światło odbijane przez jądro. Uzyskane w ten sposób wyniki porównano z wcześniejszymi pomiarami dokonanymi za pomocą radioteleskopu ALMA (Atacama Large Millimeter/submilimeter Array). Wszystkie te dane łącznie pozwoliły na określenie średnicy jądra i jego współczynnika odbicia. Okazało się, że dane z Hubble'a odnośnie wielkości jądra komety są zgodne z wcześniejszymi danymi z ALMA, jednak jądro jest ciemniejsze niż sądzono. Jest wielkie i ciemniejsze od węgla, mówi Jewitt. Kometa C/2014 UN271 od ponad miliona lat podąża w kierunku Słońca. Pochodzi prawdopodobnie z Obłoku Oorta, ale – podobnie jak inne komety – nie narodziła się w nim, ale została tam wypchnięta przez oddziaływania grawitacyjne olbrzymich planet w czasach, gdy orbity Jowisza i Saturna wciąż ewoluowały. Kometa Bernardinelli-Bernstein znajduje się na eliptycznej orbicie, a jej podróż wokół Słońca trwa około 3 milionów lat.  Obecnie znajduje się w odległości około 3 godzin świetlnych od Słońca, a w najdalszym punkcie orbity od naszej gwiazdy dzieli ją około pół roku świetlnego. Obłok Oorta to hipotetyczna struktura, której istnienie jako pierwszy postulował holenderski astronom Jan Oort. Masa Obłoku może sięgać nawet 20-krotności masy Ziemi. Jednak samego obłoku nie możemy zaobserwować, gdyż tworzący go materiał, w tym olbrzymia liczba komet, jest zbyt słabo widoczny, byśmy mogli go bezpośrednio obserwować. Jeśli Obłok istnieje, to jest największą strukturą w Układzie Słonecznym i jest – przynajmniej przy obecnym stanie techniki – całkowicie dla nas niewidzialny. Wiemy jednak, że komety przybywają do wewnętrznych obszarów Układu Słonecznego z każdej strony, a to sugeruje, że Obłok Oorta ma kształt sfery. Jeśli on rzeczywiście istnieje, to sondy Voyager mogą do niego dotrzeć za około 300 lat, a kolejnych 30 000 lat zajmie im przelot przez Obłok. « powrót do artykułu
  2. Prekolumbijska kultura Hopewell była szeroko rozpowszechniona na wschodzie dzisiejszych USA. Pojawiła się ok. 100 r. p.n.e. i zniknęła ok. 500 roku n.e. Naukowcy z University of Cincinnati znaleźli dowody wskazujące, że do jej upadku mogła przyczynić się kometa, która zniszczyła wioski i otaczające je lasy. Byłby to więc drugi znany przypadek – po Tall el-Hammam, identyfikowanym z Sodomą – gdy ludzkie osady zostały zniszczone w wyniku katastrofy kosmicznej. Uczeni z Cincinnati informują na łamach Nature, że na położonych wzdłuż doliny rzeki Ohio 11 stanowiskach archeologicznych kultury Hopewell, znajdujących się w 3 stanach, odkryli dowody na liczne eksplozje w atmosferze. Znaleziono bowiem mikrosferule bogate w żelazo i siarkę oraz nietypową koncentrację irydu i platyny. Odkryto też warstwę węgla drzewnego, świadczącą o oddziaływaniu wysokich temperatur. Datowanie radiowęglowa wykazało, że badana warstwa pochodzi z lat 252–383. W okresie tym zostało udokumentowanych 69 komet bliskich ziemi. Naukowcy zauważają też, że po tym okresie w pobliżu miejsc znalezienia nietypowej warstwy zaczęto wznosić konstrukcje ziemne w kształcie komety. Wszystkie te dowody mają wskazywać, że dolina Ohio i istniejące tam wsie zostały zbombardowane materiałem niesionym przez kometę. Wiemy, że kultura Hopewell przetrwała katastrofę. Mogła się ona jednak przyczynić do jej upadku. Już bowiem około roku 500 dochodzi do zaniknięcia wymiany kulturowej i handlowej, nikt nie wznosi już kopców, nie pojawią się nowe wytwory sztuki. Stanowiska archeologiczne kultury Hopewell zawierają nietypowo wysoką koncentrację i zróżnicowanie meteorytów w porównaniu do stanowisk innych kultur. Mamy tutaj meteoryty żelazne, kamienne i żelazno–kamienne. Rozkład przestrzenny tych meteorytów, ich kontekst i różny skład był dotychczas wyjaśniany hipotezą o wykorzystywaniu ich w długodystansowej wymianie handlowej. Jest jednak możliwe, że wiele z tych meteorytów pochodzi z pojedynczego wydarzenia. Komety zawierają wiele meteoroidów o zróżnicowanej budowie, czytamy w Nature. W trakcie badań uczeni stwierdzili, że epicentrum bombardowania materiałem przyniesionym przez kometę znajdowało się w lub w pobliżu stanowiska archeologicznego Turner w hrabstwie Hamilton położonym na południowym zachodzie stanu Ohio. Wydaje się, że materiał spadał w z północnego zachodu na południowy zachód. Co interesujące położone niedaleko kopce, zwane Milford Earthworks, mają taką właśnie orientację. W miarę oddalania się od stanowiska Turner koncentracja mikrosferuli spada. Znajdujemy je jednak ponad 200 kilometrów dalej na południe, w Indian Fort Mountain. Zdaniem naukowców, mikrosferule te to materiał wzbity w powietrze wskutek oryginalnego bombardowania. Jego rozkład bardziej na linii północ-południe niż oryginalny przebieg uderzenia na linii północny zachód – południowy zachód można wyjaśnić przeważającymi w Ameryce Północnej frontami pogodowymi przechodzącymi z zachodu na wschód. Zdaniem naukowców epicentrum bombardowania objęło około 500 km2, a cały obszar, który ucierpiał w wyniku przelotu komety to około 14 900 km2. Nie wiemy, czy ktoś wówczas zginął. Jednak po tym wydarzeniu przedstawiciele kultury Hopewell zbierali meteoryty i wykonywali z nich przedmioty, które były później wkładane do grobów zmarłych. W epicentrum wydarzenia zaczęto wznosić kopce w kształcie komety, a symbolika i tradycja ustna Hopewell została odziedziczona przez następców, którzy opowiadają o kosmicznej katastrofie, stwierdzają autorzy badań. O Lenipinšia, rogatym wężu lecącym po niebie i zrzucającym skały, opowiada lud Myaamia, w języku Szaunisów słowo Tekoomsē odnosi się do komety znanej jako Podniebna Pantera, a Irokezi opowiadają o Dajoji, Podniebnej Panterze, która miała moc niszczenia lasów. W opowieściach Ottawów znajdziemy historię o dniu, w którym słońce spadło na Ziemię, a Huronowe i Wyandoci wspominają czasy, gdy przez niebo przetaczała się czarna chmura, zniszczona strzałą przez Hehnoha. « powrót do artykułu
  3. Pedro Bernardinelli i Gary Bernstein z Univeristy of Pennsylvania odkryli gigantyczną kometę, która zmierza w stronę Słońca. Już w roku 2031 zbliży się ona na najmniejszą odległość od naszej gwiazdy. Kometa Bernardinelli-Bernstein, oficjalnie nazwana C/2014 UN271, została zauważona podczas analizy zdjęć z jednego z najdoskonalszych aparatów wykorzystywanych w astronomii. Amerykańscy naukowcy analizowali obrazy z lat 2013–2019 wykonane przez 570-megapikselowy Dark Energy Camera (DECam) umieszczony na Victor M. Blanco Telscope w Chile. Urządzenie jest wykorzystywane do monitorowania około 300 milionów galaktyk, a uzyskane dane służą do lepszego zrozumienia ciemnej materii. Uczeni, analizując około 80 000 obrazów, znaleźli na nich ponad 800 obiektów z Układu Słonecznego. Na 32 z nich zauważyli olbrzymią kometę, którą po raz pierwszy widać na zdjęciach z roku 2014. Opierając się na ilości światła odbijanego przez kometę Bernardinelli-Bernstein, jej odkrywcy stwierdzili, że ma ona średnicę 100–200 kilometrów. To około 10-krotnie więcej niż średnica przeciętnej komety. Masa olbrzyma jest zaś około 1000-krotnie większa niż masa przeciętnej komety. To zaś oznacza, że mamy do czynienia z największą kometą odkrytą w czasach współczesnych oraz z największym znanym nam obiektem pochodzącym z Obłoku Oorta. Na pierwszym z wykonanych zdjęć kometa znajduje się w odległości około 25 jednostek astronomicznych (j.a.) od Słońca, czyli mniej więcej w takiej odległości jak Neptun. Uczeni oceniają jednak, że swoją podróż rozpoczęła z Obłoku Oorta, znajdującego się około 40 000 j.a. od naszej gwiazdy. Obecnie kometa Bernardinelli-Bernstein znajduje się w odległości 20 j.a. od Słońca. Z ostatnich zdjęć wynika, że jej powierzchnia na tyle się rozgrzała, że pojawił się warkocz. Jego utworzenie się pozwala oficjalnie zakwalifikować obiekt jako kometę. Pomimo olbrzymich rozmiarów i masy, nie musimy przejmować się obecnością komety. Z wyliczeń jej trajektorii wynika, że podleci ona do Słońca nie bliżej niż na odległość 11 j.a. Dla przypomnienia – jednostka astronomiczna to średnia odległość pomiędzy Ziemią a Słońcem. Bernardinelli-Bernstein nie zbliży się więc do Ziemi bliżej niż Saturn. To na tyle duża odległość, że giganta najprawdopodobniej nie będzie można obserwować gołym okiem. « powrót do artykułu
  4. Kometa Hyakutake, zwana też Wielką Kometą z 1996 roku, przez ostatnich 20 lat szczyciła się mianem posiadaczki najdłuższego znanego warkocza. Miał on imponującą długość 3,3 jednostek astronomicznych. Brytyjscy astronomowie poinformowali właśnie o odkryciu jeszcze dłuższego warkocza. I to od razu dwukrotnie dłuższego. Odkrycia dokonał profesor Geraint Jones z University College London i jego koledzy podczas analizowania danych zebranych przez sondę Cassini. Naukowcy zauważyli, że gdy w roku 2002 Cassini znajdowała się pomiędzy orbitami Jowisza a Saturna, jej przyrządy zarejestrowały znaczne zwiększenie przepływu protonów. Najbardziej prawdopodobnym ich źródłem w wietrze słonecznym była jonizacja wodoru z warkocza komety 153P/Ikeya-Zhang. W czasie, gdy sonda rejestrowała protony, wspomniana kometa znajdowała się blisko linii wyznaczanej przez pozycję Słońca i Cassini. Dlatego urządzenia mogły zarejestrować materiał pochodzący z komety. Zespół Jonesa wylicza, że protony – zanim zostały wychwycone przez sondę – przebyły 6,5 jednostki astronomicznej, a cały warkocz miał długość powyżej 7,5 j.a, czyli 7,5 odległości pomiędzy Ziemią a Słońcem. Jako, że średnia odległość do naszej gwiazdy wynosi około 150 milionów kilometrów, oznacza to, że długość warkocza przekraczała miliard kilometrów. Warkocz komety pojawia się w wyniku interakcji komety ze Słońcem. W jej wyniku tworzą się dwa rodzaje warkocza. Ten bardziej znany, łatwiejszy do zauważenia, to warkocz utworzony z pyłu uwalniającego się z komety w wyniku nagrzewania jej jądra przez Słońce. Drugim zaś jest warkocz jonowy, powstający w wyniku jonizacji gazu z jądra komety. W przypadku 153P/Ikeya-Zhang szczęśliwy traf spowodował, że protony uwolnione z wodoru w procesie jonizacji podążyły w kierunku, w którym akurat znajdowała się Cassini. Sonda przeleciała przez warkocz jonowy komety 153P/Ikeya-Zhang. Naukowcy nie wykluczają, że odnotowany przez nich rekord zostanie wkrótce pobity. Niedawno bowiem sonda Solar Orbiter przeleciała przez warkocz komety ATLAS. W sieci udostępniono opisujący odkrycie artykuł pt. Cometary ions detected by the Cassini spacecraft 6.5 au downstream of Comet 153P/Ikeya-Zhang « powrót do artykułu
  5. W latach 70. syryjski odcinek Eufratu został przegrodzony zaporą Taqba. Okolice zalały wody sztucznego jeziora Assad, a pod wodą znalazło się wyjątkowe stanowisko archeologiczne. Abu Hureyra to jedna z najwcześniejszych osad ludzkich. Niemal 12 800 lat temu osiedlili się tam nomadzi i zaczęli uprawiać rośliny. Teraz dowiadujemy się, że osada została zniszczona przez... kosmiczną katastrofę. Zanim wody jeziora Assad zalały Abu Hureyra, archeolodzy pobrali liczne próbki, dzięki którym od wielu lat mogą badać osadę. Teraz, wśród materiału pobranego w Abu Hureyra zidentyfikowano stopiony materiał, którego cechy wskazują, że powstał w bardzo wysokiej temperaturze. Dalece wyższej, niż ludzie byli w stanie osiągnąć w tamtym czasie, wyższej niż powstaje przy pożarze, uderzeniu pioruna czy procesach wulkanicznych. To była tak wysoka temperatura, że w czasie krótszym niż minuta roztopiłaby samochód, mówi James Kennett, emerytowany profesor geologii z Uniwersytetu Kalifornijskiego w Santa Barbara. Tak intensywne gwałtowne zjawisko musiało pochodzić z niezwykle energetycznego wydarzenia. Czegoś, co można porównać tylko z upadkiem meteorytu. Kennett i jego zespół uważają, że mamy tutaj do czynienia z pierwszym dowodem na wpływ uderzenia komety w ludzką osadę. Zdaniem naukowców na Abu Hureyra spadły fragmenty komety, która pod koniec plejstocenu rozpadła się w atmosferze. Kometa przyczyniła się do wyginięcia wielkich zwierząt, w tym mamutów, amerykańskich koni i wielbłądów i zniknięcia kultury Clovis w Ameryce Północnej. Naukowcy już przed 12 laty natrafili na pierwsze ślady takiego wydarzenia w tym regionie. Abu Hureyra to najbardziej na wschód wysunięty obszar granicy młodszego dryasu, to którego należy około 30 miejsc w Amerykach, Europie i na Bliskim Wschodzie. Miejsca te noszą ślady intensywnych pożarów, znajduje się tam warstwa spalonego węgla zawierającego miliony nanodiamentów, wysoką koncentrację platyny i niewielkie metaliczne sfery, które uformowały się w bardzo wysokich temperaturach. Hipoteza o katastrofie kosmicznej w młodszym dryasie zyskała w ostatnich czasach na wadze, gdyż odkrywa się coraz więcej śladów ją potwierdzających. Jeśli jest ona prawdziwa, to Abu Hureyra może być jedynym udowodnionym przykładem na zniszczenie ludzkiej osady przez kosmiczną katastrofę. Co niezwykłe, dotknęła ona jednego z pierwszych stałych ludzkich osiedli na Ziemi. Wieś Abu Hureyra została gwałtownie zniszczona, mówi Kennett. Do uderzenia lub wybuchu musiało dojść na tyle blisko miejscowości, że została ona zniszczona przez gwałtowny wzrost temperatury. Analizy znalezionego materiału wykazały bowiem obecność chromu, bogatego w iryd żelaza, tytanu, platyny i innych związków, do których powstania potrzebna jest temperatura powyżej 2200 stopni Celsjusza. Takie materiały rzadko powstają w normalnych warunkach, ale są powszechnie znajdowane w miejscach upadku asteroid, dodaje Kennett. Zawierający je materiał powstał niemal natychmiast wskutek roztopienia, odparowania i szybkiego schłodzenia biomasy, gruntu i osadów rzecznych. Ponadto, jako że znalezione ślady są zgodne z tym, co znajdowano w innych miejscach planety, uczeni sądzą, że katastrofę spowodowała wspomniana już kometa z młodszego dryasu. Pojedynczy upadek meteorytu nie rozrzuciłby materiału tak szeroko, jak mamy do czynienia w przypadku Abu Hureyra. Obecnie sądzi się, że wielkie komety, po wleceniu w atmosferę Ziemi, mogą powodować tysiące eksplozji, którze przez kilka minut trwałyby nad całą półkulą planety. Hipoteza o katastrofie kosmicznej w młodszym dryasie jest zgodna z tym mechanizmem. Materiał z tej katastrofy rozrzucony jest na przestrzeni ponad 14 000 kilometrów na półkuli północnej i południowej, mówi profesor Kennett. « powrót do artykułu
  6. Odkrycie nowej komety poruszyło środowisko astronomów, gdyż istnieje prawdopodobieństwo, że pochodzi ona spoza Układu Słonecznego. Jeśli tak, to jest ona drugim, po słynnym 1I/Oumuamua, obiekt, który odwiedził Układ Słoneczny. Kometę odkrył 30 sierpnia 2019 roku Gienadij Boriwos w obserwatorium MARGO na Krymie. Na razie oznaczono ją jako C/2019 Q4. Jeśli się potwierdzi, że pochodzi spoza Układu Słonecznego zostanie nazwany zgodnie z nomenklaturą stworzoną przy okazji Oumuamua, gdzie „I” oznacza „Interstellar” (Międzygwiezdny), a „1” jest liczbą porządkową przypisaną pierwszemu takiemu obiektowi. C/2019 Q4 wciąż porusza się w kierunku Słońca, jednak wstępne badania trajektorii wskazują, że nie zbliży się do naszej gwiazdy na odległość mniejszą niż Mars, a do Ziemi podleci nie bliżej niż 300 milionów kilometrów. Wkrótce po odkryciu komety używany przez NASA system Scout automatycznie zakwalifikował ją jako obiekt o możliwym pochodzeniu pozasłonecznym. Davide Farnocchia z należącego do NASA Center for Near-Earth Object Studies nawiązał współpracę z europejskim Near-Earth Object Coordination Center w celu wykonania dodatkowych obserwacji, a następnie przeanalizował je ze specjalistami z Minor Planet Center. Dzięki temu wiemy, że obecnie kometa znajduje się w odległości 420 milionów kilometrów od Słońca, a 8 grudnia bieżącego roku osiągnie peryhelium w odległości 300 milionów kilometrów. Obecnie kometa porusza się z dużą prędkością, wynoszącą 150 000 km/h, co jest wartością znacznie wyższą od prędkości typowych komet okrążających Słońce i znajdujących się w takiej właśnie odległości. Ta wielka prędkość wskazuje, że kometa prawdopodobnie pochodzi spoza Układu Słonecznego oraz że go opuści i poleci w przestrzeń międzygwiezdną, mówi Farnocchia. Eksperci wyliczyli też, że 26 października kometa przetnie płaszczyznę ekliptyki planet słonecznych pod kątem 40 stopni. C/2019 Q4 będzie widoczny jeszcze przez wiele miesięcy, jednak do jego obserwacji potrzebny będzie profesjonalny sprzęt. "Obiekt osiągnie najwięszą jasność w połowie grudnia i będzie go można obserwować za pomocą średniej wielkości urządzeń do kwietnia 2020 roku. Użytkownicy dużych profesjonalnych teleskopów będą mogli prowadzić obserwacje do października 2020", mówi Farnocchia. Astronomowie z Uniwersytetu Hawajskiego określili wielkość jądra komety na 2–16 kilometrów średnicy. « powrót do artykułu
  7. Naukowcy z Southwest Research Institute (SwRI) wysunęli hipotezę, zgodnie z którą Pluton, uznawany obecnie za planetę karłowatą, może być... gigantyczną kometą. Do takich wniosków doszli po dokładnym przyjrzeniu się pokrytemu lodem basenowi Sputnik Plantitia o powierzchni 840 000 kilometrów kwadratowych. Odkryliśmy intrygującą zgodność pomiędzy szacowaną ilością azotu w lodowcu, a ilością, jakiej należałoby się spodziewać, gdyby Pluton powstał wskutek połączenia się miliarda komet lub innych obiektów z Pasa Kuipera, podobnych w swoim składzie do badanej przez misję Rosetta komety 67P/Czuriumow-Gerasimienko, wyjaśnia Chris Glein z SwRI. Glein wraz z Hunterem Waite stworzyli nową hipotezę dotyczącą formowania się Plutona po tym, gdy przeanalizowali dane z Rosetty i z misji New Horizons, która przeleciała obok Plutona w 2015 roku. Nasze badania sugerują, że początkowy skład chemiczny Plutona, odziedziczony po budulcu, którym były komety, został zmodyfikowany przez płynną wodę, może nawet przez ocean znajdujący się pod powierzchnią, dodaje Glein. Obaj naukowcy nie odrzucają jednak dotychczasowego modelu powstania Plutona. Twierdzą, że nadal jest on obowiązujący. Nasze badania były możliwe dzięki wspaniałemu sukcesowi misji New Horizons i Rosetta, które poszerzają nasze rozumienie początków i ewolucji Plutona, mówią naukowcy. Wykorzystując chemię byliśmy w stanie prześledzić niektóre cechy Plutona z okresu jego formowania się, dodają. « powrót do artykułu
  8. W Goddard Space Flight Center specjaliści z NASA pracują nad harpunem, który umożliwiłby pobieranie próbek z komet. Próba wysłania lądownika na obracający się, pędzący z prędkością 240 000 kilometrów na godzinę obiekt, który jest otoczony chmurą szczątków byłaby bardzo ryzykowna. Stąd pomysł na wysłanie pojazdu, który po zbliżeniu się do komety wystrzeliłby harpun zbierający próbki. Testowy mechanizm wystrzeliwania przypomina metalową balistę. Ze względów bezpieczeństwa balista skierowana jest na podłogę. Przypadkowo odpalony pocisk może przelecieć ponad 1,5 kilometra. Mechanizm napinany jest elektrycznie, co pozwala na precyzyjne dobranie siły. Balista pozwala na wystrzeliwanie pocisków z prędkością do 30 metrów na sekundę. Jednym z podstawowych problemów, z którym muszą poradzić sobie specjaliści, jest takie zaprojektowanie harpunu, by radził sobie z różnymi materiałami, z których mogą składać się komety. Nie jesteśmy pewni, na co natrafimy na komecie. Jej powierzchnia może być miękka i niestabilna, zbudowana w większości z pyłu, ale może to być również lód wymieszany z drobnymi kamykami lub ze skałami. Najprawdopodobniej poszczególne obszary będą miały różny skład, musimy więc stworzyć harpun, który będzie w stanie penetrować różne materiały. Obecnie najważniejszym naszym celem jest znalezienie odpowiedzi na pytanie, jakiej siły należy użyć w zależności od materiału i głębokości, na jaki chcemy go spenetrować. Jak musi być geometria czubka w zależności od materiału? Jak masa harpunu i jego przekrój wpłyną na jego zdolności do penetracji? Balista pozwala nam na bezpieczne przetestowanie różnych opcji i określenie wielkości urządzenia, które będzie użyte podczas misji - mówi Donald Wegel, główny inżynier projektu. Specjaliści pracują też nad stworzeniem pojemnika na próbki. Musi on być umieszczony w pobliżu czubka pocisku i pozostawać otwarty podczas penetracji komety. Później musi zostać zamknięty, odłączony od pocisku i dostarczony do sondy kosmicznej. Jak przyznają inżynierowie, opracowanie wszystkich elementów harpunu to niezwykle trudne zadanie. Przeprowadzenie symulacji komputerowych nie jest możliwe, gdyż nigdy wcześniej nie próbowano niczego wbijać w kometę, nie istnieją zatem żadne dane, na których można by oprzeć symulacje. Uczeni przewidują, że sonda będzie wyposażona w wiele różnych harpunów dostosowanych do różnej budowy obszaru, w który ma się wbić. Inżynierowie z NASA najpierw zakończą badania nad prototypem, a później zwrócą się o pieniądze na budowę gotowego urządzenia. Dopóki nie udowodnią, że prototyp jest skuteczny, nie otrzymają kolejnych funduszy. W pracy niewątpliwie pomoże im fakt, że w roku 2014 w ramach misji Rosetta Europejska Agencja Kosmiczna wbije harpun w kometę 67P/Churyumov-Gerasimenko. Jego zadaniem będzie umocowanie próbnika Philae na powierzchni komety. Harpun Rosetty to bardzo sprytny projekt, ale nie jest przeznaczony do zbierania próbek. Przyjrzymy się ich pracy i dzięki temu posuniemy się naprzód w projekcie zbiornika na próbki - stwierdził Wegel. Pomysł użycia harpunu narodził się podczas opracowywania sposobu lądowania na komecie. Jako, że są bo bardzo małe obiekty, ich grawitacja jest niezwykle słaba. Ewentualna sonda musiałaby w jakiś sposób przyczepić się do komety. Inżynierowie stwierdzili, że znacznie łatwiejsze od zakotwiczenia i wiercenia w komecie będzie samo użycie mechanizmu, który i tak musiałby posłużyć do przycumowania pojazdu do komety.
  9. Jak dowiedzieli się naukowcy badający kometę Hartley 2, woda, którą ona zwiera, jest znacznie bardziej podobna do wody obecnej na Ziemi, niż płyn wchodzący w skład każdej innej zbadanej pod tym kątem komety. Pomiary, wykonane za pomocą teleskopu Herschel wykazały, że woda niesiona przez Hartley 2 zawiera o połowę mniej deuteru niż ta obecna na innych kometach. Ziemia uformowała się jako skalista, sucha planeta. Coś zatem musiało przynieść na nią wodę. Wykonane dotychczas pomiary składu kilku komet wykazały, że znajdując się na nich woda zawiera znacznie więcej deuteru niż ziemski płyn. Deuter zaś jest „odciskiem palca" wody. Z kolei z badań meteorytów wiemy, że skład wody jest w nich bardzo podobny do tego, co mamy na Ziemi. Stąd więc wniosek, iż ziemskie H2O pochodzi z asteroidów. Hartley 2 do pierwsza przeanalizowana pod kątem występowania wody kometa z Pasa Kuiperta. Dotychczas analizowano komety z Obłoku Oorta. Ted Bergin z University of Michigan mówi, że najnowsze badania wskazują, iż komety mogły przyczynić się do pojawienia się wody na Ziemi. Kosmiczne zasoby wody podobnej do występującej w ziemskich oceanach są znacznie większe niż sądziliśmy i obejmują one zasoby obecne na nierozpoznanych jeszcze kometach - stwierdził uczony. Musimy dobrze zastanowić się nad tym, co dzieje się w Układzie Słonecznym i czy możemy wykluczyć komety jako źródło ziemskiej wody - dodał. Zdaniem Jamesa Greenwood z Wesleyan University należy przyjrzeć się modelom dotyczącym budowy wszechświata i uzupełnić je o nowe informacje. Konieczne są też badania kolejnych komet z Pasa Kuiperta. Niewykluczone bowiem, że obiekty te były znaczącym źródłem wody na Ziemi. W przeszłości naukowcy sądzili, że asteroidy i komety to różne klasy obiektów kosmicznych. Teraz nowe wyniki pokazują, że prymitywne asteroidy i komety to rodzeństwo - stwierdził Alessandro Morbidell z Obserwatorium Lazurowego Wybrzeża.
  10. Z badań przeprowadzonych przez naukowca z Uniwersytetu w Manchesterze wynika, że znaczna część atmosferycznych zasobów dwóch gazów szlachetnych, kryptonu i ksenonu, mogła dotrzeć do Ziemi dzięki kometom. Autor hipotezy, dr Greg Holland, opiera swoje przypuszczenia na analizach izotopowych. Jak wykazały pomiary przeprowadzone przez jego zespół, zasoby obu kryptonu i ksenonu znajdujące się pod naszymi stopami znacznie różnią się od tych, które wdychamy wraz z powietrzem. Jak wykazał dr Holland, w próbkach pobranych z atmosfery procentowa zawartość lekkich izotopów obu badanych pierwiastków jest znacznie wyższa, niż w rezerwuarach ditlenku węgla (CO2) znajdujących się kilkaset metrów pod ziemią. Skład materiału pozyskanego z atmosfery jest więc bliższy temu spotykanemu w kometach, zaś dane dotyczące budowy meteorytów świadczą o podobieństwie ich składu do zawartości badanych izotopów w skorupie ziemskiej. Zdaniem dr. Hollanda zebrane informacje świadczą o tym, że źródłem znacznej części ziemskich zasobów ksenonu i kryptonu mogły być komety, które znalazły się w pobliżu Ziemi na wczesnych etapach jej formowania. O szczegółach swojego studium badacz poinformował za pośrednictwem czasopisma Science.
  11. W Adler Planetarium w Chicago zawisło największe na świecie zdjęcie Drogi Mlecznej. Obraz o wymiarach 37 metrów długości i 1 metr wysokości, który w centrum wybrzusza się jak nasza galaktyka, osiągając wysokość 2 metrów, powstał dzięki pracy specjalistów z NASA. Złożyło się nań 800 000 zdjęć wykonanych przez Teleskop Spitzera. Jego rozdzielczość to 2,5 miliarda pikseli. Obraz pokrywa obszar Galaktyki, który możemy zakreślić z Ziemi wybierając jako odnośniki długość palca wskazującego (wysokość obrazu) i rozłożone ramiona (długość). To najbardziej dokładne i największe zdjęcie Drogi Mlecznej wykonane w podczerwieni - mówi Sean Carey ze Spitzer Science Center. NASA już jednak przygotowuje się do stworzenia jeszcze bardziej dokładnych obrazów nieba. Za tydzień, 11 grudnia, z bazy Vandenberg zostanie wystrzelony teleskop WISE (Wide-field Infrared Survey Explorer), który w ciągu półtora roku wykona w podczerwieni zdjęcia całego nieba. Znajdą się na nich setki milionów obiektów, w tym wiele takich, których nigdy wcześniej ludzie nie oglądali - od najzimniejszych gwiazd, po bliskie Ziemi, a mimo to niewidoczne ciemne komety czy asteroidy. Uczeni przypuszczają, że WISE odkryje setki tego typu obiektów, a kolejne setki tysięcy w naszym systemie słonecznym. Astronomowie mają również nadzieję, że WISE znajdzie około 1000 brązowych karłów, czyli niewielkich gwiazd wielkości Jowisza, które mają zbyt małą masę, by świecić. Niewykluczone, że jakiś brązowy karzeł znajduje się bliżej Ziemi niż Proxima Centauri. Jeśli tak, to będzie on najbliższą nam - oczywiście poza Słońcem - gwiazdą.
  12. NASA poinformowała o znalezieniu w przestrzeni kosmicznej składników niezbędnych do powstania życia. W próbkach pobranych z komety Wild 2 przez sondę Stardust odkryto glicynę czyli najprostszy z aminokwasów wchodzących w skład białek. Nasze odkrycie wspiera teorię mówiącą, że niektóre ze składników koniecznych do pojawienia się życia powstały w kosmosie i zostały dostarczone na Ziemię przez meteoryty lub komety - mówi doktor Jamie Elsila z Goddard Space Flight Center. Z jej opinią zgadza się doktor Carl Pilcher, dyrektor Instytutu Astrobiologii NASA. Sonda Stardust przeszła przez ogon komety Wild 2 w styczniu 2004 roku. Urządzenie wykorzystało aerożel do zebrania próbek gazu i pyłu tworzącego ogon komety. Dwa lata później, 15 stycznia 2006 roku próbki zostały dostarczone na Ziemię. Od tamtej pory są przedmiotem badań, które mają odpowiedzieć na pytania dotyczące formowania się komet i historii Układu Słonecznego. Zespołowi z NASA aż dwa lata zajęło testowanie i ulepszanie sprzętu tak, by możliwe było zbadanie mikroskopijnej ilości zachowanych próbek. Glicynę odkryto w nich już wcześniej, jednak nie było pewności, czy próbki nie zostały zanieczyszczone na Ziemi. Istniała obawa, że dostała się ona na pokład Stardusta w czasie budowy sondy. Dopiero najnowsze badania, podczas których wykonano analizy izotopów, wykazały, że aminokwas nie pochodzi z Ziemi. Okazało się bowiem, że znaleziona glicyna zawiera więcej izotopu węgla 13C niż glicyna pochodzenia ziemskiego.
  13. NASA potwierdziła doniesienia australijskiego astronoma-amatora Anthony'ego Wesleya, który zauważył w atmosferze Jowisza "bliznę" wielkości Ziemi. Zdaniem specjalistów oznacza to, że w ciągu kilku ostatnich dni w planetę uderzył jakiś obiekt, najprawdopodobniej kometa. Do zderzenia doszło niemal równo 15 lat po ostatnim zaobserwowanym wypadku tego typu - kolizji komety Shoemakera-Levyeg 9 z Jowiszem. Wesley jest programistą, a kosmosem interesuje się od dzieciństwa. Ma sporą wiedzę na jego temat, co pozwoliło mu zauważyć niezwykłą plamę w atmosferze Jowisza. Obecnie sprzęt astronomiczny jest tak tani, że amatorzy coraz częściej wspomagają w pracy zawodowych astronomów. Sam Wesley posługuje się sprzętem, którego wartość nie przekracza 10 000 dolarów.
  14. Odkryta w 1986 roku przez Donalda Machholza kometa Machholz 1 być może pochodzi z obcego układu słonecznego. Naukowcy nie od dzisiaj wiedzą, że z naszego Układu Słonecznego "uciekło" w przestrzeń kosmiczną wiele komet. Przypuszczają zatem, że podobne zjawisko ma miejsce w innych układach, a niektóre z takich komet mogą trafić w okolice naszego Układu. Najnowsze badania pokazują, że właśnie taką kometą może być Machholz 1. David Schleicher, astronom z Lowell Observatory w Arizonie, porównał skład chemiczny tej komety z ponad 150 innymi i zauważył znaczącą różnicę. Otóż Machholz 1 zawiera aż 72 razy mniej cyjanogenu (C2N2) niż wynosi średnia dla innych komet. Znalazł w niej również dużo mniej molekuł C2 i C3, które zawierają, odpowiednio, dwa i trzy atomy węgla. Na podstawie swych badań Schleicher wysunął trzy hipotezy. Pierwsza mówi, że Machholz 1 przybyła spoza naszego Układu Słonecznego, a w przeszłości była częścią ubogiego w węgiel dysku protoplanetarnego. Według drugiej z hipotez, kometa przybyła z najbardziej odległych regionów Układu Słonecznego, gdzie panują niższe temperatury i bardziej surowe warunki niż w okolicach, gdzie zwykle tworzą się komety. W końcu trzecia z teorii mówi o tym, że Machholz 1 powstała w naszym Układzie jako kometa uboga w węgiel, a fakt, iż co pięć lat przelatuje bardzo blisko Słońca, gdzie się mocno nagrzewa, pozbawił ją też cyjanogenu. Co prawda podobnego zjawiska nie zauważono nawet wśród komet, które bardziej zbliżają się do naszej gwiazdy, jednak żadna z nich nie czyni tego tak często. Schleicher nie chce przesądzać, która z hipotez jest prawdziwa, ale mówi, że niezwykła orbita komety każe brać pod uwagę oddziaływanie Słońce. Z drugiej jednak strony przypomina, że istnieje jeszcze jedna kometa z małą zawartością cyjanogenu, Yanaka. Nigdy nie osiąga ona tak wysokich temperatur co Machholz, a to może sugerować, że brak cyjanogenu nie ma związku z wysokimi temperaturami. W związku z odkryciem Schleichera najprawdopodobniej powstanie nowa klasa komet. Dotychczas tego typu obiekty zaliczane są do jednej z dwóch klas. W pierwszej znajdziemy większość znanych komet. To klasa komet typowych, które przez długi czas znajdowały się w Obłoku Oorta, ale najprawdopodobniej powstały w okolicach Saturna, Urana i Naptuna, a część z nich przybyła z Pasa Kuipera. Druga klasa komet to obiekty, w którym zauważono brak molekuł węgla, a większość z nich przybyła z Pasa Kuipera. Teraz powstanie trzecia klasa, do której zostanie zaliczona kometa Machholza i, być może, Yanaka. Będą do niej należały komety, którym brakuje co najmniej trzech molekuł z węglem - C2, C3 i cyjanogenu. Pochodzenie tych komet jest na razie tajemnicą. W roku 2012 Machholz 1, która obecnie jest blisko Słońca, znowu stanie się widzialna i astronomowie spróbują dokonać pomiaru poziomu innych zawierających węgiel molekuł.
  15. Profesor Ken Tankersley z University of Cincinnati postanowił obalić pewną teorię, dotyczącej tego, co wydarzyło się w Ameryce Północnej przed 12 900 laty. Wówczas, pod koniec epoki lodowcowej, doszło do gwałtownego wymierania zwierząt i ludzi. Jedna z teorii, której głosicielem jest geofizyk Allan West, mówi, że nad powierzchnią kontynentu eksplodowała kometa lub asteroida. Tankersley chciał zadać kłam tym twierdzeniom, badając złoża złota, srebra i diamentów znajdujące się w stanach Indiana i Ohio. Jednak jego badania, zamiast obalić teorię Westa, stały się najmocniejszym dowodem na jej poparcie. Tankersley sądził, że wspominane minerały zostały przyniesione z rejonu Wielkich Jezior Amerykańskich przez lodowiec. Szczegółowe analizy wykazały jednak, że pochodzą one z regionów położonych znacznie dalej na północy. Moje badania złota, srebra i diamentów miały obalić teorię Westa. Nie wiedziałem jednak, że twierdził on również, iż kometa nie wybuchła po prostu gdzieś nad Kanadą, ale że rozpadła się nad regionem bogatym w złoża diamentów - mówi Tankersley. Po raz pierwszy zetknął się z teorią Westa, gdy został zaproszony do organizowanej przez niego badawczej grupy interdyscyplinarnej. West mówił wówczas, że nad Kanadą wybuchł obiekt o średnicy około 2 kilometrów. Teraz dzięki pracom Tankersleya znaleziono mocny dowód na poparcie tej tezy. Naukowcy uznali bowiem, że jedynym logicznym wytłumaczeniem przesunięcia na południe diamentów, złota i srebra jest ich wyrzucenie w wyniku silnej eksplozji. Obecnie prowadzone są dodatkowe badania mające zweryfikować teorię kosmicznej katastrofy. Około 12 900 lat temu epoka lodowcowa w Ameryce Północnej miała się ku końcowi. Nagle wydarzyło się coś, co spowodowało zagładę mamutów oraz zniknięcie pierwszej w tym rejonie znaczącej kultury ludzkiej zwanej cywilizacją Clovis. Rozpoczął się okres tzw. młodszego dryas, który o 1300 lat przedłużył epokę lodowcową.
  16. Naukowcy z Centrum Astrobiologii w Cardiff stworzyli komputerowy model ruchów Układu Słonecznego względem Drogi Mlecznej. Twierdzą, że odkryte cykle pokrywają się z pojawiającym się okresowo na Ziemi katastrofami, doprowadzającymi do wyginięcia wielu gatunków (Monthly Notices of the Royal Astronomical Society). Gdy Układ Słoneczny kołysał się w tę i z powrotem w stosunku do płaszczyzny Galaktyki, w pewnym momencie dochodziło do wzrostu oddziaływań grawitacyjnych chmur gazu i pyłu, co z kolei doprowadzało do zmiany toru komet. Niektóre z nich zderzały się z Błękitną Planetą. Badacze z Cardiff twierdzą, że kiedy co 35-40 mln lat "przechodzimy" przez płaszczyznę Galaktyki (równik), szanse na zderzenie z kometą wzrastają aż 10-krotnie. Kratery znajdowane na powierzchni Ziemi także sugerują, że liczba kolizji z kometami wzrasta mniej więcej co 36 mln lat. To idealna zgodność między tym, co widzimy na powierzchni, a tym, czego się spodziewamy po przeanalizowaniu danych galaktycznych – cieszy się profesor William Napier. W dalszej części swoich wywodów Napier utrzymuje, że okresy bombardowania przez komety pokrywają się z incydentami masowego wyginięcia, takimi jak wymarcie dinozaurów 65 mln lat temu. Naukowcy sądzą, że o ile sprężynujący ruch doprowadził do zniknięcia konkretnych organizmów z powierzchni naszej planety, o tyle dopomógł w rozprzestrzenieniu się życia jako takiego. Kiedy kometa uderzała w Ziemię, w przestrzeń kosmiczną wylatywały fragmenty materii z ważnym ładunkiem: mikroorganizmami. Dyrektor Centrum Astrobiologii profesor Chandra Wickramasinghe przedstawia też prognozy na przyszłość. Bazując na wskazaniach modelu, twierdzi, że kolejny okres zderzeń Ziemi z kometami zbliża się już wielkimi krokami.
  17. W zewnętrznych pierścieniach Saturna NASA zaobserwowała duże kawałki księżyca. Niektóre z nich są wielkości stadionu piłkarskiego. Specjaliści przypuszczają, że niegdyś istniał tam księżyc o średnicy co najmniej 32 kilometrów, który okrążał planetę. W ciało niebieskie uderzyła kometa lub wielki meteoryt, doprowadzając do jego rozbicia. Najnowsze odkrycie to pierwsze dowody na istnienie pozostałości po księżycu w pierścieniach Saturna. Naukowcy do dzisiaj spierają się, w jaki sposób mogły one powstać. Odkrycie resztek księżyca, który uległ zagładzie prawdopodobnie 100 milionów lat temu, wspiera teorię, która mówi, że pierścienie Saturna powstały wskutek kolizji ciał niebieskich, a w kolizje te były zaangażowane również księżyce. Zwolennicy konkurencyjnej teorii utrzymują, że pierścienie powstały podczas formowania się planety i są zbudowane z tego samego materiału, co ona.
  18. Astrobiolog z Cardiff University, Chandra Wickramasinghe i jego zespół poinformowali, że z ich wyliczeń wynika, iż życie pochodzi z wnętrza komet, a nie powstało na Ziemi. Naukowcy przeprowadzili kalkulacje i stwierdzili, iż prawdopodobieństwo powstania życia w kometach jest kwadrylion (1024) razy większe, niż powstanie go na naszej planecie. Komety i ich gorące, wypełnione wodą wnętrze jest miejscem, gdzie organiczne molekuły dały początek życiu. Zaistnienie takiego procesu jest bardziej prawdopodobne we wnętrzu komety, niż w jakimś zbiorniku wodnym na Ziemi – mówi Wickramasinghe. Większość naukowców zgadza się z tezą, że komety mogły przynieść na Ziemię wodę i materiał organiczny. Jednak niektórzy krytykują Wickramasinghe mówiąc, że jego stwierdzenia są czystymi spekulacjami. Moim zdaniem wysnuł on wnioski z szeregu spekulacji, które nie zostały poparte dowodami – mówi David Morrison, naukowiec z należącego do NASA Ames Research Center. Brytyjski astrobiolog oparł się na założeniu, że komety są porowate i mogą od milionów lat przechowywać wodę w stanie ciekłym. Morrison zwraca jednak uwagę, iż nie wiadomo, czy komety zawierają wodę. Nie wiadomo również, czy komety istnieją poza naszym systemem słonecznym. Dotychczas żadnej takiej komety nie odkryto. W rewelacje Wickramasinghe nie wierzy też Paul Falkowski, biochemik z Rutgers University. Jego zdaniem miejsca powstania życia nie można po prostu wyliczyć. To wymaga uczynienia podstawowych założeń. A my nie znamy szans na powstanie życia. Wiemy tylko o jednej planecie, na której ono istnieje. O innych nie wiemy nic – mówi. Sam Falkowski ze swoim zespołem jest autorem badań, które sugerują, iż życie nie byłoby w stanie przetrwać daleko w kosmosie, w warunkach, w jakich podróżują komety. Badał on liczące sobie 8 milionów lat DNA wydobyte z lodów Antarktyki. Było ono mocno zdegradowane. Na jego podstawie wyliczono, że okres rozpadu DNA wynosi na Ziemi około 1,1 miliona lat. Do jego degradacji przyczynia się promieniowanie z kosmosu. W przestrzeni kosmicznej jest ono znacznie większe, niż na Ziemi, a to oznacza, że wszelkie życie organiczne, które powstałoby na kometach, bardzo szybko zostałoby zniszczone. Falkowski wyliczył, że przetrwałoby ono najwyżej kilkaset tysięcy lat.
×
×
  • Dodaj nową pozycję...