Znajdź zawartość
Wyświetlanie wyników dla tagów 'kalcyt' .
Znaleziono 5 wyników
-
Chitony, zwane wielotarczowcami (Polyplacophora), są morskimi mięczakami, u których w strukturach spełniających funkcję oczu, a jest ich kilkaset, występują soczewki z kryształów dwóch polimoficznych odmian węglanu wapnia: kalcytu oraz aragonitu. O istnieniu oczu chitonów naukowcy wiedzieli już od kilkudziesięciu lat, nie mieli jednak pojęcia, czy służą do oglądania znajdujących się wyżej obiektów, np. drapieżników, czy tylko do wykrywania zmian w oświetleniu. Tymczasem okazuje się, że chitony mogą widzieć różne obiekty, choć prawdopodobnie nie za dobrze - wyjawia Daniel Speiser z Uniwersytetu Kalifornijskiego w Santa Barbara. Zadziwiające, jak istoty te wytwarzają oczy praktycznie ze skały - zachwyca się prof. Sönke Johnsen z Duke University. Wygląda jednak na to, że mamy do czynienia z prostym sposobem na wyewoluowanie oczu z dostępnego materiału. Chitony mają już bowiem aragonitową skorupkę. Johnsen i Speiser badali pewnien gatunek wielotarczowca, a mianowicie Acanthopleura granulata. Jego przedstawiciele mają płaską skorupkę zbudowaną z ośmiu płytek. Znajdują się na nich klastry światłoczułych komórek, pokryte setkami niewielkich soczewek. Testując wzrok mięczaków, Amerykanie umieszczali pojedyncze osobniki na łupkowej płytce. Pozostawione samym sobie, po jakimś czasie unosiły część ciała, by odetchnąć. W tym momencie Speiser pokazywał im albo czarny dysk o średnicy od 35 mm do 10 cm, albo szary łupek, który blokował dostęp takiej samej ilości światła. Dysk lub łupek pojawiał się 20 cm nad chitonem. Mięczaki nie reagowały na szary łupek, ale opadały na widok krążka o średnicy powyżej 3 cm. Johnsen uważa, że u człowieka odpowiadałoby to spojrzeniu w niebo i dostrzeżeniu dysku o średnicy 20 Księżyców. Oznacza to, że nasz wzrok jest o wiele wrażliwszy od wzroku chitonów. Ponieważ mięczaki reagowały tylko na czarne dyski, a nie na blokujące tę samą ilość światła szare łupki, sugeruje to, że nie reagują na prostą zmianę w oświetleniu. Biolodzy nie sądzą, by ich "skalne" oczy stanowiły część ewolucyjnej ścieżki prowadzącej do naszych oczu. Speiser opowiada, że pierwsze chitony pojawiły się na Ziemi ponad 500 mln lat temu. Najstarsze wielotarczowce z oczami znajdowano jednak w zapisie kopalnym dopiero z ostatnich 25 mln lat, co oznacza, że w perspektywie ewolucyjnej są stosunkowo świeżą zdobyczą. Wg biologa, chitony potrzebowały oczu, by chronić się przed drapieżnikami. Podczas eksperymentów naukowcy sprawdzili, czy oczy chitonów działają w wodzie i w kontakcie z powietrzem, ponieważ niektóre gatunki Polyplacophora spędzają czas zarówno w zanurzeniu, jak i wynurzeniu. Okazało się, że sprawdzają się w obu środowiskach i że soczewki inaczej skupiają wtedy światło. Strukturalnie siatkówka chitonów przypomina siatkówkę ślimaków, ale ta ostatnia reaguje na pojawienie się światła, podczas gdy u wielotarczowców może reagować wyłącznie na jego usunięcie.
-
- kalcyt
- węglan wapnia
-
(i 6 więcej)
Oznaczone tagami:
-
Pokryte drzewami wysepki z mokradeł Everglades to nie do końca twory geologiczne, lecz właściwie pokryte skałami osadowymi prehistoryczne pryzmy śmieci. Badania archeologiczne wykazały bowiem, że pod warstwą torfu w caliche znajdują się rozmaite artefakty, kości i węgiel drzewny, a pod nimi coś jeszcze. Zazwyczaj wysepki mają około metra wysokości i kształt łzy. Kiedyś sądzono, że są one posadowione na wybrzuszeniach z węglanów ze skały macierzystej. Kiedyś jednak Robert Carr z Archaeological and Historical Conservancy w Davie na Florydzie ustalił, że pod torfem znajduje się czerwonoszara utwardzona warstwa. Gail Chmura i Maria-Theresia Graf z McGill University postanowiły kontynuować jego badania i zaczęły wykopaliska na kilku wysepkach. Znalazły czerwonoszarą warstwę i stwierdziły, że to caliche - iluwialna skała osadowa złożona głównie z węglanu wapnia (kalcytu). Miała ona 40-75 cm grubości i to w niej tkwiły wspomniane wcześniej artefakty wraz kośćmi i węglem. Gdy badaczki się przez nią przebiły, znalazły pryzmę śmieci sprzed 4 tys. lat. Jak więc doszło do utworzenia charakterystycznych wysepek? Kanadyjki podają, że zwierciadło wód gruntowych w Everglades podniosło się w ciągu ostatnich 5 tysięcy lat, tak więc wyniesienia stały się wygodną oazą dla drzew. Po ukorzenieniu czerpały one wodę znad skały macierzystej. Ponieważ zawierała za dużo węglanów i fosforanów, rośliny wydzielały je do okolicznej gleby, prowadząc do wytworzenia caliche (w zwykłych okolicznościach skała powstaje wskutek ewaporacji podciąganych kapilarnie roztworów przesyconych kalcytem). Drzewa doprowadziły do powiększenia i dalszego wyniesienia wysepek. Caliche chroni z kolei same drzewa, osłaniając znajdującą się pod spodem glebę przed częstymi pożarami. W takich warunkach życie może się odrodzić. Chmura obawia się jednak, że powodzie zniszczą warstwę z kalcytu.
-
- Gail Chmura
- caliche
-
(i 8 więcej)
Oznaczone tagami:
-
By przeżyć w wymagającym środowisku, jeżowce wgryzają się w kamień. Za pomocą zębów, znajdujących się w aparacie szczękowym zwanym latarnią Arystotelesa, odgryzają fragmenty skały. W ten sposób tworzą sobie nisze, gdzie mogą się ukryć przed drapieżnikami i które pomagają im złapać grunt "pod nogami". Nie grozi im już wtedy obijanie z prądem wody przemieszczającym się po basenie pływowym. Zęby jeżowców mają jeszcze jedną cechę, szczególnie ważną z ludzkiego punktu widzenia, nigdy się nie tępią. Sekret nieprzemijającej ostrości przez dziesięciolecia fascynował naukowców niemal tak samo jak sekret wiecznej młodości. Dzięki najnowszym badaniom prof. Pupy Gilbert z University of Wisconsin udało się opisać mechanizm samoostrzenia zębów u jeżowców z gatunku Strongylocentrotus purpuratus. Artykuł na ten temat ukazał się w piśmie branżowym Advanced Functional Materials. Gdyby odtworzyć sztuczkę jeżowców w przypadku noży czy innych narzędzi, nigdy nie wymagałyby ostrzenia. Ząb jeżowca ma bardzo skomplikowaną konstrukcję. To jedna z nielicznych struktur w przyrodzie, która podlega samoostrzeniu – podkreśla Gilbert, dodając, że zęby jeżowca stale rosną i stanowią biomineralną mozaikę słupkowych i tabliczkowych kryształów kalcytu. Są one ułożone na krzyż, a spaja je supertwardy kalcytowy nanocement. Pomiędzy kryształami znajdują się warstwy materiałów organicznych, które nie są tak wytrzymałe jak one. Organiczne warstwy są słabymi ogniwami łańcucha. W zębach w określonych z góry miejscach istnieją tzw. punkty krytyczne. To koncepcja podobna do perforowanego papieru w tym sensie, że materiał rozpada się w ustalonych zawczasu miejscach. Wygląda więc na to, że zużyta część zęba odrywa się od reszty jak znaczek pocztowy... Na powierzchni budowa krystaliczna uzębienia jeżowca nie przypomina innych kryształów występujących w naturze. Brak tu wyraźnie wyodrębnionych faset, lecz na najgłębszych poziomach wszystko wygląda już znajomo: atomy są uporządkowane, tworząc charakterystyczną biomineralną mozaikę. Podczas eksperymentów (finansowanych przez Departament Energii i Narodową Fundację Nauki) Amerykanie zastosowali mikroskopy rentgenowskie, które pokazały, jak ułożone są kryształy.
- 3 odpowiedzi
-
W jaskini Soreq w pobliżu Jerozolimy znaleziono dowody, które wskazują, że powodem upadku Imperium Rzymskiego i Bizancjum były zmiany klimatyczne (Quaternary Research). Eksperci z University of Wisconsin-Madison i Izraela przeprowadzili analizę geochemiczną stalagmitu z groty. Okazało się, że pustynnienie regionu pomiędzy 100 a 700 rokiem n.e. pokrywało się ze zmierzchem i końcem starożytnych cesarstw. Ian Orland wyjaśnił, że dzięki zawartości izotopów tlenu i zanieczyszczeniom z warstw kalcytu, np. materii organicznej napływającej wraz z deszczówką, można określić roczną ilość opadów w okresie tworzenia się stalagmitów, czyli między 200 r. p.n.e. a 1100 r. n.e. Koncentryczne kręgi minerału przypominają słoje w drewnie. Nie wiadomo, czy to osłabiło Cesarstwo Bizantyjskie czy nie, ale to interesująca korelacja – podsumowuje profesor John Valley. Amerykanie posłużyli się zaawansowaną techniką mikropróbkowania jonowego. Pobierano miniaturowe wycinki o przekroju zaledwie jednej setnej milimetra. Udało się też uzyskać obraz o dużej rozdzielczości, a to niezwykle istotne przy badaniu sezonowych i rocznych zmian pogody. Jaskinia Soreq ma co najmniej 185 tys. lat i jest nadal aktywna. Obecnie geolodzy zamierzają się zająć starszymi próbkami, w tym z końca ostatniego zlodowacenia.
- 23 odpowiedzi
-
Bakterie glebowe zostaną prawdopodobnie wykorzystane przy stabilizowaniu budynków w rejonach występowania trzęsień ziemi. Według badaczy z Uniwersytetu Kalifornijskiego w Davis, zadanie mikrobów byłoby proste: przetwarzałyby luźną piaszczystą glebę w skałę. Podczas silnych trzęsień ziemi piaski zachowują się jak ciecze, co, jak można się łatwo domyślić, nie wpływa korzystnie na usadowione na nich konstrukcje i budynki, które zostają zwyczajnie wciągnięte w głąb. Do tej pory inżynierowie wprowadzali do piaszczystych gleb związki chemiczne łączące ze sobą poszczególne ziarna. Jason DeJong, profesor nadzwyczajny inżynierii cywilnej i środowiskowej na UC Davis, twierdzi jednak, że działania takie prowadzą do skażenia wody i gleby. Nowa technologia była testowana jedynie w laboratorium. Spośród wielu różnych bakterii wybrano Bacillus pasteurii. Mikroorganizmy odkładają dookoła ziaren piasku kalcyt, czyli węglan wapnia (CaCO3), który działa jak cement. Podczas eksperymentów DeJong i zespół wprowadzali do ziemi kultury bakteryjne, dodatkowe składniki odżywcze oraz tlen. Okazało się, że umieszczony w cylindrze luźny piasek zamieniał się w twardy walec. Podobne zabiegi pozwalały łatać niewielkie zarysowania powstałe np. na pomnikach, ale jeszcze nigdy nie wzmacniano w ten sposób gleby. Profesor wylicza korzyści wynikające z zastosowania metody bakteryjnej: 1) jest nietoksyczna, 2) można się do niej odwołać na każdym etapie budowy czy "życia" już skonstruowanego budynku. Nie zmienia się struktury gleby, wypełnione zostają po prostu puste przestrzenie między ziarnami (Journal of Geotechnical and Geoenvironmental Engineering). Zespół Kalifornijczyków chce rozwinąć swoją technologię do tego stopnia, by można ją było zastosować w praktyce.
-
- Jason DeJong
- cement
- (i 8 więcej)