Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów 'jony' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 7 wyników

  1. Pokrycie implantów stawów kolanowych rodnikami sprawia, że są one przez organizm postrzegane jako ciała w mniejszym stopniu obce. Zmniejsza to ryzyko odrzucenia protez przez organizm. Prof. Marcela Bilek z Uniwersytetu w Sydney sądzi, że wolne rodniki tworzą wokół powierzchni implantu coś w rodzaju czapki niewidki. Australijczycy wyjaśniają, że implanty stawów kolanowych czy biodrowych, stenty itp. z definicji wymagają kontaktu struktur biologicznych z metalem czy plastikiem. Kiedy jednak białka stykają się ze sztucznymi powierzchniami, ulegają denaturacji i zatracają swoją konformację przestrzenną, która jest im niezbędna do prawidłowego funkcjonowania. Organizm próbuje je naprawiać, a gdy się to nie udaje, wskutek nadmiernego włóknienia implant zostaje otoczony grubą warstwą tkanki bliznowatej. Naukowcy z antypodów wyszli z założenia, że potrzebne są silnie wiążące (się) powierzchnie, które nie wywołują denaturacji kompatybilnego białka. Tradycyjne powierzchnie hydrofilne spełniają jeden z tych warunków - nie prowadzą do denaturacji unieruchomionych protein - ale niestety, wykazują do nich niskie powinowactwo. Po przejrzeniu literatury przedmiotu i wygenerowaniu własnych hipotez zespół Bilek przetestował więc metodę wykorzystującą naczynie z plazmą i strumienie jonów. Dzięki niej uzyskano powierzchnię hydrofilną, zdolną do wiązania kowalencyjnego z czynnymi biologicznie cząsteczkami. Podczas eksperymentów okazało się bowiem, że siły elektrostatyczne powodują, iż jony w plazmie uderzają w powierzchnię materiału, np. metalu, i zaczynają go penetrować, prowadząc do powstania rodników z niesparowanymi elektronami. Po wyjęciu powierzchni z plazmy rodniki migrują na powierzchnię, gdzie reagują z tlenem z powietrza. Wskutek tego materiał staje się hydrofilny i przyciąga białka, które są normalnie złożone w taki sposób, że część wykazująca powinowactwo do wody znajduje się na zewnątrz. Z czasem coraz więcej rodników migruje na powierzchnię, dzięki czemu między nimi a białkami mogą powstać wiązania kowalencyjne. Australijczycy udowodnili, że czas utworzenia monowarstwy kowalencyjnie związanych białek zależy od kinetyki, a także liczby cząsteczek protein w roztworze oraz wolnych rodników w rezerwuarze pod powierzchnią badanego materiału. Jako że magazyn rodników można wytworzyć w każdym ciele stałym, metoda zespołu Bilek sprawdzi się w odniesieniu do różnego rodzaju urządzeń biomedycznych, od stentów po płucoserca. Warto też wspomnieć o ich potencjale w zakresie wykrywania patogenów. W tego rodzaju czujnikach rodniki zapobiegałyby odkształceniu białek stosowanych do detekcji szkodliwych bakterii czy wirusów. Powłoka zostanie też zapewne wdrożona w mikromacierzach ułatwiających leczenie wczesnych etapów chorób. Bilek tłumaczy, że jako część powłoki wolne rodniki pozostają związane i nie mogą poczynić szkód w DNA komórek. Obecnie trwają prace nad białkami do tworzonych powłok, które "zachęcałyby" tkanki do integrowania ze sztucznymi powierzchniami.
  2. Naukowcy z Uniwersytetu w Valladolid zbadali 40 marek piwa z 5 kontynentów i stwierdzili, że ciemne piwa mają więcej niezwiązanego z białkami wolnego żelaza niż piwa jasne i bezalkoholowe (Journal of the Science of Food and Agriculture). Hiszpanie wykazali, że w piwach ciemnych średnia zawartość wolnego żelaza wynosiła 121 części na miliard, a w piwach jasnych i bezalkoholowych, odpowiednio, 92 i 63 ppb (od ang. parts per bilion). Chociaż to bardzo małe ilości, różnice są widoczne i mogą być wynikiem procesu produkcyjnego lub wykorzystanych surowców [słodu i ekstraktu chmielowego] – wyjaśnia prof. Carlos Blanco. Ważnym etapem produkcji jasnego piwa jest filtrowanie przez ziemię okrzemkową, czyli zmieloną skałę osadową, zbudowaną z silnie porowatych okrzemek. Wiąże się to z wychwytywaniem żelaza. W przypadku piwa bezalkoholowego stosuje się destylację próżniową, która także zmniejsza stężenie jonów żelaza. Są one pociągane za lotnymi cząsteczkami. Posługując się techniką różnicowej pulsowej woltamperometrii adsorpcyjnej, zespół z Valladolid zbadał 17 hiszpańskich piw i 23 z innych krajów: 28 jasnych, 6 ciemnych i 6 bezalkoholowych. Najwyższą zawartość żelaza wykryto w ciemnym piwie hiszpańskim (165 ppb), a najniższą w pewnym piwie holenderskim (41 ppb). Żelazo pomaga utlenić związki organiczne, które zapewniają piwu stabilność oraz smak. Trzeba jednak pamiętać, że zbyt wysokie stężenia tego pierwiastka (0,1 mg/dm3) negatywnie wpływają na rozwój drożdży. Poza tym w takich warunkach zachodzą niekorzystne zmiany sensoryczne (ciemnienie). Gdy zawartość żelaza w wodzie przekracza 0,3 mg/dm3, jest ona niesmaczna, co oczywiście, przekłada się także na właściwości piwa, które może mieć cierpki posmak. Tworząca się na nim podczas nalewania piana miewa silne zabarwienie. Żelazo jest niezbędnym metalem. Wchodzi w skład wielu białek i enzymów, które odgrywają kluczową rolę w różnych procesach, np. transporcie tlenu (hemoglobina) czy syntezie DNA. Warto jednak podkreślić, że żelazo ma też swoją "ciemną stronę". Jony metali przejściowych, w tym żelaza (Fe+3, Fe+2), katalizują bowiem reakcję, w ramach której nadtlenek wodoru tworzy rodnik hydroksylowy. Jest on tak reaktywny, że reaguje z każdą napotkaną cząsteczką.
  3. Fizycy z Narodowych Instytutów Standardów i Technologii (NIST) jako pierwsi w historii doprowadzili do splątania dwóch jonów za pomocą mikrofal. Dotychczas w tym celu wykorzystywano lasery. Prace te pokazują, że w przyszłości możliwe będzie zastąpienie wielkich systemów laserowych niewielkimi źródłami mikrofal, takimi jak np. wykorzystywane w telefonach komórkowych. Mikrofale już wcześniej były używane do manipulowania jonami, jednak teraz, dzięki umieszczeniu źródła ich emisji bardzo blisko jonów, w odległości zaledwie 30 mikrometrów, udało się uzyskać splątanie atomów. Możliwość splątywania cząsteczek to jeden z podstawowych warunków transportu informacji i korekcji błędów w przyszłych komputerach kwantowych. Podczas swoich prac naukowcy wykorzystali źródło mikrofal umieszczone w układzie scalonym zintegrowane z pułapką jonową oraz stołowy zestaw laserów, luster i soczewek. Zestaw ten jest dziesięciokrotnie mniejszy niż dotychczas wykorzystywane. Użycie ultrafioletowego lasera o niskiej mocy wciąż jest koniecznością, gdyż za jego pomocą chłodzi się jony i obserwuje wyniki badań. Jednak w przyszłości cały zespół lasera można będzie zminiaturyzować do rozmiarów laserów używanych np. w odtwarzaczach DVD. Możliwe, że średniej wielkości komputer kwantowy będzie przypominał telefon komórkowy połączony z urządzeniem podobnym do laserowego wskaźnika, a zaawansowane maszyny będą wielkości współczesnego peceta - mówi fizyk Dietrich Leibfried, współautor badań. Chociaż kwantowe komputery raczej nie będą urządzeniami, które każdy będzie chciał nosić przy sobie, to będą mogły używać elektroniki podobnej do tej, jaka jest obecnie wykorzystywana w smartfonach do generowania mikrofal. Podzespoły takie są dobrze znane i już obecne na rynku. Taka perspektywa bardzo nas ekscytuje - dodaje uczony. W czasie eksperymentów dwa jony zostały złapane w elektromagnetyczną pułapkę. Nad pułapką znajdował się układ scalony zawierający elektrody z azotku glinu pokrytego złotem. Elektrody były aktywowane, by wywołać impulsy promieniowania mikrofalowego oscylujące wokół jonów. Ich częstotliwość wahała się od 1 do 2 gigaherców. Mikrofale doprowadziły do powstania pola magnetycznego, które z kolei wywołało rotację spinów. Jeśli moc takiego pola magnetycznego jest w odpowiedni sposób zwiększana, można doprowadzić do splątania jonów. Metodą prób i błędów, wykorzystując przy tym zestaw trzech elektrod, udało się uczonym odnaleźć właściwy sposób manipulowania polem magnetycznym i doprowadzić do splątania. Wykorzystanie mikrofal w miejsce laserów ma i tę zaletę, że zmniejsza liczbę błędów, które są powodowane niestabilnościami w promieniu lasera oraz zapobiega pojawieniu się w jonach spontanicznej emisji wywoływanej światłem laserowym. Jednak technika mikrofalowego splątania musi zostać jeszcze udoskonalona. Uczonym z NIST udało się uzyskać splątanie w 76% przypadków. Tymczasem za pomocą lasera uzyskuje się wynik rzędu 99,3 procenta.
  4. Uczeni z MIT-u, jako pierwsi w historii, zaobserwowali przepływ pojedynczych jonów przez węglowe nanorurki. Dzięki takiemu osiągnięciu nanorurki można będzie wykorzystać w roli superczułych detektorów oraz do badania reakcji chemicznych na poziomie pojedynczych molekuł. W najnowszym numerze Science naukowcy informują, że naładowane jony sodu czy chloru nie tylko są w stanie przepłynąć szybko przez węglowe nanorurki, ale mogą robić to pojedynczo w danym przedziale czasu. Nanorurkowe kanały są bardzo długie, mają nawet pół milimetra, zatem umożliwiają wykrycie niewielkich molekuł. Obecnie używane są systemy zbudowane z krzemowych membran z wywierconymi otworami. Są one jednak około 20 000 razy krótsze niż kanały z nanorurek. To z kolei oznacza, że mogą przez nie przechodzić tylko duże molekuły, te mniejsze przepłyną tak szybko, że nie zostaną wykryte. Z perspektywy molekularnej są to wyjątkowo wielkie odległości. Takie przerzucanie mostów pomiędzy światem nano a większymi rozmiarami daje nam możliwość zastosowania zjawisk występujących z nanoskali w makroświecie - od oczyszczania wody, poprzez detektory po ogniwa paliwowe - mówi profesor Shekhar Garde z Rensselaer Polytechnic Institute. Profesor Michael Strano, doktor Chang Young Lee oraz studenci Wonjoon Choi i Jea-Hee Han wyprodukowali nanorurkowe kanały na podstawce o powierzchni 1 cm2. Podstawka łączyła ze sobą dwa zbiorniki z wodą. Każdy z nich zawierał elektrodę. Jako, że przepływ prądu uzależniony jest od przepływu jonów, uczeni łatwo mogli stwierdzić, czy jony przedostają się przez nanorurkowy kanał. Jednocześnie zauważono, że przez nanorurkę przepływają nie tylko protony, ale również inne dodatnio naładowane jony. Zaobserwowano przechodzące przez kanał jony sodu. Naukowcy uważają, że obecnie, ze względu na budowę kanałów, tylko jony naładowane dodatnio mogą się przedostać. Chcą jednak stworzyć nanorurkowe kanały transportujące też ujemnie naładowane jony. Gdy już będą mieli dwa typy takich kanałów, zamierzają połączyć je w jednej membranie i wykorzystać ją do odsalania wody morskiej. Obecnie stosowane technologie, takie jak destylacja o odwrotna osmoza są bardzo drogie i wymagają dostarczenia dużych ilości energii. Membrany, dzięki którym z wody morskiej będzie można oddzielić jony sodu i chloru, powinny być znacznie tańszym sposobem odsalania.
  5. Dzięki wysiłkom międzynarodowego zespołu powstał molekularny czujnik do badania ilości cynku w komórkach i określania jego umiejscowienia. Może to pomóc w ujawnieniu szczegółów związanych z wieloma chorobami, np. cukrzycą typu 2. czy alzheimeryzmem. Cynk (Zn) jest bardzo istotny dla przebiegu wielu procesów w organizmie, m.in. w mięśniach i mózgu, dlatego 5% białek wytwarzanych w komórkach naszego ciała odpowiada za transport tego pierwiastka. Naukowcy sądzą, że odgrywa on pewną rolę w dużej liczbie chorób. Odpowiada np. za upakowanie insuliny w komórkach trzustki, a u pacjentów z cukrzycą typu 2. mamy do czynienia z zaburzeniem działania genu kontrolującego ten proces. Przedtem naukowcy musieli się zadowolić chemicznymi metodami określania stężenia cynku w komórkach. Były one jednak zbyt "toporne", by dało się stwierdzić, ile dokładnie go jest i/lub w którym miejscu w komórce się gromadzi. Teraz eksperci z Imperial College London oraz Politechniki w Eindhoven stworzyli sensor molekularny, bazujący na fluorescencyjnych białkach. Dzięki niemu można zmierzyć odległość między jonami cynku w pojedynczej komórce, określając w ten sposób ilość pierwiastka. Czujnik wykorzystuje tzw. mechanizm Förstera, a więc fluorescencyjne rezonansowe przeniesienie energii (ang. fluorescence resonance energy transfer, FRET), w ramach którego dochodzi do przekazania energii fluorescencji - wymiany wzbudzenia - między dwoma cząsteczkami: donorem i akceptorem. Warunkiem koniecznym jest ich sprzężenie. Brytyjczycy i Holendrzy zbudowali czujnik z dwóch białek meduzy, zwanych zielonymi białkami fluoryzującymi (ang. green fluorescent protein, GFP). Pierwsze przekształcili, by emitowało światło o określonej długości fali, a drugie przeorganizowali, żeby je absorbowało. Kiedy białka wiązały się z jonami cynku, odległość pomiędzy nimi wzrastała i transmisja światła stawała się słabsza. Za pomocą mikroskopu fluorescencyjnego akademicy wykrywali konkretną długość fali świetlnej. W ten sposób znajdowali w komórce cynk, a zabarwiona plama białek wskazywała na jego dokładne umiejscowienie. Naukowcy wykorzystali swoją metodę, by przyjrzeć się upakowaniu insuliny wokół jonów cynku w komórkach trzustki. Namierzono dużo kationów w miejscach, gdzie zlokalizowany jest hormon. Dalsze studia dadzą zapewne wgląd w dokładny mechanizm cukrzycy. Wkrótce technika zostanie przetestowana na modelu mysim, który pozwoli prześledzić ruchy pierwiastka w żywej tkance.
  6. Duńscy naukowcy potwierdzili stosunkowo słabo dotąd znaną teorię tworzenia się chmur. Wg nich, jądra kondensacji, które pomagają ustabilizować zarodniki kropelek, tłumaczą formowanie się chmur nad obszarami miejskimi, ale nie nad lasami deszczowymi, oceanami czy w czasach poprzedzających rewolucję przemysłową. Gdyby jednak uznać, że cząstki promieniowania kosmicznego – protony i neutrony – zderzają się w atmosferze ziemskiej z cząsteczkami wody, wybijając z nich elektrony, a powstające w ten sposób jony przyciągają nienaruszone cząsteczki, sprawa wyglądałaby już zupełnie inaczej. W 2006 r. członkowie zespołu fizyka Henrika Svensmarka z Duńskiego Uniwersytetu Technicznego w Kopenhadze sztucznie wytworzyli aerozol w komorze atmosferycznej. Zbombardowali wtedy dipole wody strumieniem cząstek. Większa liczba jonów oznaczała większą ilość aerozolu. W ramach najnowszego studium Svensmark skoncentrował się na spadkach natężenia promieniowania kosmicznego, tzw. spadkach Forbusha. Są one skutkiem burz na Słońcu i koronalnych wyrzutów masy. Do przestrzeni międzyplanetarnej trafiają głównie elektrony i protony oraz nieco jonów cięższych pierwiastków. Wiatr słoneczny i związane z nim pole magnetyczne odpychają cząstki promieniowania kosmicznego, tworząc coś w rodzaju okresowej tarczy. Gdyby rzeczywiście tworzenie się chmur miało coś wspólnego z promieniowaniem kosmicznym, w czasie spadku Forbusha okrywa powinna być cieńsza. By to sprawdzić, Duńczycy zebrali satelitarne dane pogodowe z ostatnich 22 lat i zestawili je z 26 spadkami Forbusha. W przypadku 5 najsilniej zaznaczonych zawartość kropli w chmurach zmalała średnio o 7%. Po kilku tygodniach wszystko wracało do normy. Teraz jesteśmy przekonani, że spadki Forbusha wpływają na aerozole. Svensmark sądzi, że jego odkrycia wskazują na związek między promieniowaniem kosmicznym a zmianą klimatu. Skoro z chmur pada i odbijają one światło słoneczne, to ich skurczenie oznacza ogrzanie Ziemi.
  7. Najlepszym kształtem pojazdu kosmicznego, który zagwarantuje bezpieczeństwo załodze długodystansowych lotów, wcale nie jest rakieta, ale coś przypominającego jeżyka z grejpfruta z powbijanymi na wykałaczkach w skórkę wiśniami – twierdzi Ram Tripathi, inżynier z laboratorium badawczego NASA w Hampton. Ta futurystyczna forma ma uchronić astronautów przed nowotworami wywoływanymi promieniowaniem. Najważniejszym jego rodzajem jest galaktyczne promieniowanie kosmiczne (ang. galactic cosmic rays, GCR). Opisuje się je jako strumień naładowanych elektrycznie cząsteczek, m.in. elektronów, jonów metali ciężkich (choćby żelaza i uranu) oraz powstających wskutek aktywności Słońca protonów i jąder helu. Pokrywająca pojazd dodatkowa kapsuła z aluminium nie jest dobrym rozwiązaniem, ponieważ stanowiłaby nadmierne obciążenie, przyczyniające się do spalania dużych ilości paliwa. W artykule opublikowanym w czasopiśmie fachowym Advances in Space Reasearch Tripathi, John Wilson i Robert Youngquist stwierdzają, że prace nad ochroną przed szkodliwym promieniowaniem stanowią obecnie jeden z priorytetów NASA. Tylko po rozwiązaniu tego problemu można myśleć o podróżach na Marsa i dalej. Tripathi obmyślił następującą konstrukcję. Z głównej kapsuły wystawałyby podpory. Miałyby one ok. 50 m długości. Na nich umieszczono by naładowane dodatnio i ujemnie sfery, które odbijałyby naładowane cząsteczki GCR. Inżynier wyliczył, że ich średnica powinna wynosić 10-20 metrów. Ruch takich "wisienek" byłby dokładnie kontrolowany, aby jak najskuteczniej chronić załogę przed promieniowaniem. Sfery dają większą objętość przy jednocześnie mniejszej masie, a co najważniejsze, równomiernie rozmieszczają odbijane ładunki na swojej powierzchni. Tylko sfery byłyby wyprodukowane z glinu, podczas gdy główna część statku z najnowocześniejszego materiału kompozytowego: połączenia węglowych nanorurek z glinem. Jest on niezwykle lekki, ale zarazem wytrzymały, dlatego skutecznie odpierałby ataki jonów metali ciężkich. Naukowiec przekonuje, że idealne zabezpieczenie uwzględnia zarówno inteligentne materiały, jak i ekranowanie elektrostatyczne.
×
×
  • Dodaj nową pozycję...