Znajdź zawartość
Wyświetlanie wyników dla tagów 'jonosfera' .
Znaleziono 3 wyniki
-
Naukowcy z Google Research proponują, by wykorzystać miliony smartfonów używanych z systemem Android do badania w czasie rzeczywistym zmian w jonosferze i poprawienia tym samym dokładności systemów nawigacji satelitarnej. Zamiast postrzegać jonosferę jako obszar, który zaburza GPS, możemy odwrócić sytuację i wykorzystać odbiorniki GPS jako urządzenia do badania jonosfery. Łącząc dane z czujników milionów telefonów stworzyliśmy szczegółowy obraz jonosfery, którego w inny sposób nie można uzyskać, stwierdził Brian Williams i jego koledzy. Jonosfera do obszar słabo zjonizowanej plazmy rozciągającej się na wysokości 50–1500 kilometrów nad Ziemią. Jonosfera ulega ciągłym zmianom, a zmiany te są jednym z najpoważniejszych źródeł błędów występujących w systemach nawigacji satelitarnej. Systemy takie wykorzystują duże sieci satelitów, które wysyłają sygnały radiowe do odbiorników na Ziemi. Każdy z odbiorników, na przykład nasz smartfon, oblicza swoją pozycję na podstawie czasu nadejścia sygnałów. Najpierw jednak sygnały wysłane przez satelity przechodzą przez jonosferę, wchodzą w interakcje z wolnymi elektronami, co je nieco spowalnia. Problem w tym, że zagęszczenie swobodnych elektronów nie jest stałe ani w przestrzeni, ani w czasie. Zmienia się ono też w zależności od aktywności Słońca i ziemskiego pola magnetycznego. Na całym świecie działają miliardy smartfonów, a każdy z nich wyposażony jest w silny procesor i liczne czujniki. Chociaż czujniki te są przeważnie gorszej jakości niż standardowe czujniki używane w instrumentach naukowych, liczba i zagęszczenie smartfonów powodują, że dzięki nim można uzyskać lepszy obraz jonosfery niż z instniejącej sieci instrumentów naukowych, które ją badają. Naukowcy z Google'a chcą wykorzystać fakt, że wiele smartfonów posiada odbiorniki wykrywające sygnały nawigacji satelitarnej w dwóch różnych częstotliwościach. Ich wykorzystanie do mapowania jonosfery nie jest jednak łatwe, gdyż smartfony nie zostały zaprojektowane pod kątem jej badania. Ich anteny są słabe, a odbierane sygnały często zakłócają pobliskie budynki, na jakość wpływają też sprzęt i oprogramowanie użyte przez producentów smartfonów. Jednak jest ich tak dużo, że te wszystkie niedoskonałości można zniwelować za pomocą liczby urządzeń. Dlatego Williams i jego zespół proponują, by wykorzystać miliony smartfonów, które dzięki możliwości odbioru sygnału w dwóch częstotliwościach, dostarczą jednocześnie danych potrzebnych do skalibrowania i poprawy obliczeń. Naukowcy przyznają, że dane z pojedynczego smartfonu byłyby dość słabej jakości, ale dzięki olbrzymiej liczbie urządzeń, możliwe będzie przeprowadzenie obliczeń korygujących i uzyskanie dobrej jakości danych. Szczególnie obiecujący jest taki system wykorzystujący smartfony użytkowników z Afryki, Indii czy Azji Południowo-Wschodniej, gdzie sieć naukowych stacji badających jonosferę jest niewielka. Badacze przeprowadzili już wstępne testy. Wykorzystali miliony urządzeń z Androidem rozsiane po całym świecie. Nie musieli przy tym identyfikować poszczególnych urządzeń, co zapewniało użytkownikom anonimowość i bezpieczeństwo. Dzięki temu naukowcy byli w stanie zobrazować wiele zmian w jonosferze – pojawienie się bąbli plazmy nad Indiami i Ameryką Południową, wpływ niewielkiej burzy słonecznej na jonosferę nad Ameryką Północą czy ubytek wolnych elektronów nad Europą. Już te wstępne testy dwukrotnie zwiększyły obszar jonosfery, jaki był dotychczas badany i poprawiły rozdzielczość istniejących map. Głównym jednak celem naukowców jest poprawienie działania systemów nawigacji satelitarnej. Twierdzą, że gdyby taki system został wykorzystany na masową skalę, powodowane zmianami jonosfery błędy zostałyby zmniejszone o wiele metrów, co przyniosłoby liczne korzyści. Odbiornik GPS odróżniłby, czy znajdujemy się na autostradzie, czy na położonej obok równoległej drodze gruntowej, a to olbrzymia różnica na przykład w przypadku konieczności wysłania służb ratunkowych, stwierdza Williams. « powrót do artykułu
-
Zmiany w atmosferze zapowiadają trzęsienie ziemi
KopalniaWiedzy.pl dodał temat w dziale Nauki przyrodnicze
Ostatnie badania NASA dają nadzieję, że w przyszłości uda się przewidywać trzęsienia Ziemi. Już w ubiegłym roku satelita DEMETER zanotował znaczący wzrost sygnałów radiowych o niskiej częstotliwości, który miał miejsce przed trzęsieniem ziemi na Haiti. Teraz Dimitar Ouzounov z NASA Goddard Space Flight Centre i jego koledzy zaprezentowali wstępne wyniki z obserwacji Japonii sprzed ostatniego trzęsienia. Obrazy satelitarne pokazują olbrzymi wzrost liczby elektronów w jonosferze nad epicentrum. Szczyt wzrostu miał miejsce na trzy dni przed trzęsieniem. Jednocześnie zauważono wzrost emisji w podczerwieni, którego szczyt przypadł na kilka godzin przed wstrząsem. To pokazuje, że przed trzęsieniem, nad epicentrum wzrosła temperatura atmosfery. Obserwacje te wydają się potwierdzać teorię o powiązaniu litosfery, atmosfery i jonosfery, która mówi, że na kilka dni przed trzęsieniem z litosfery uwalniają się olbrzymie ilości radonu. Ten radioaktywny gaz jonizuje powietrze, co z kolei prowadzi do dużej kondensacji wody, której molekuły są przyciągane przez jony. W procesie tym uwalniane jest ciepło, co można zauważyć w podczerwieni. -
Mieszkańcy Japonii mieli okazję obejrzeć ostatnio na niebie niezwykłe widowisko. Dzięki pracom naukowców z Japońskiej Agencji Badań Kosmicznych (JAXA), Uniwersytetu Hokkaido i Uniwersytetu Technicznego Kochi mogli bowiem zobaczyć kosmiczne fajerwerki. Naukowcom nie chodziło bynajmniej o zabawę, lecz o eksperymentalne badania atmosfery. Przy okazji jednak doszło do prawdziwego widowiska. Przez kilkanaście sekund na nocnym niebie było widać trzy kolejno zapalające się na czerwono kule. Podczas pierwszych kilku sekund były one tak jasne jak księżyc. Te kule to opary litu wypuszczone w jonosferze przez rakietę, która została wystrzelona w celu prowadzenia wspomnianych badań. Kule płonęły na wysokości od 100 do 250 kilometrów nad naszą planetą. Prowadzenie badań na tych wysokościach jest trudne, gdyż satelity powinny pozostawać na wysokości ponad 250 kilometrów a balony nie wznoszą się powyżej 50 km. Rakieta S-520 została wystrzelona z Centrum Kosmicznego Uchinoura. Przemieściła się po łuku i gdy zaczęła opadać, uwolniła na wysokości 250 kilometrów pierwszą porcję litu. Czterdzieści sekund później, na wysokości 200 kilometrów rozbłysła kolejna litowa chmura. Minęło kolejne 40 sekund i 150 kilometrów nad głowami Japończycy mogli zobaczyć jeszcze jeden rozbłysk. Naukowcy obserwowali i analizowali rozbłyski, a mieszkańcy Tokio żałowali, że chmury uniemożliwiły im obejrzenie kosmicznych fajerwerków. Zdjęcia z "pokazu" można zobaczyć w Sieci.