Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów 'embrionalne komórki macierzyste' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 8 wyników

  1. Naukowcy z Wolnego Uniwersytetu w Brukseli opracowali metodę, która pozwala na ukierunkowanie procesu różnicowania embrionalnych komórek macierzystych w sposób niezależny od chemicznych czynników wzrostowych uznawanych za niezbędne dla zajścia tego zjawiska. Jak wykazali, w drogach oddechowych różnicowanie może zachodzić spontanicznie w reakcji na bodźce fizyczne charakterystyczne dla tej lokalizacji. Swój eksperyment badacze z belgijskiej uczelni rozpoczęli od standardowej hodowli embrionalnych komórek macierzystych (ang. embryonic stem cells - ESC). W tym celu umieszczono je na porowatej membranie, pod którą znajdowały się tzw. komórki karmiące (ang. feeder cells), których zadaniem było dostarczanie ESC substancji niezbędnych do ich wzrostu (nie wywoływały one jednak różnicowania w komórki dojrzałe). Powierzchnię membrany zalano z kolei specjalną pożywką zawierającą dodatkowe czynniki stymulujące przemianę w dojrzałe komórki dróg oddechowych. Tak przygotowane komórki hodowano przez cztery dni, podczas których co 24 godziny dodawano świeżej pożywki. Po zakończeniu pierwszego etapu eksperymentu pożywkę znad membrany usunięto, zaś ESC wystawiono na działanie powietrza przy zachowaniu dopływu płynu i czynników wytwarzanych przez komórki karmiące. Miało to symulować środowisko dróg oddechowych, w którym dojrzewające komórki z jednej strony mają kontakt z powietrzem, a z drugiej - z krwią. Po 25 dniach ekspozycji na powietrze w naczyniu stwierdzono obecność komórek wyraźnie różnicujących się w kierunku elementów nabłonka dróg oddechowych. Podobnego zjawiska nie zaobserwowano w naczyniach kontrolnych, w których nad membraną zamiast powietrza znajdowała się płynna pożywka bez składników stymulujących różnicowanie. Oznacza to, że czysto fizyczny czynnik, jakim jest kontakt z powietrzem, może zastąpić mieszankę chemicznych stymulatorów różnicowania i uruchomić program przekształcania się ESC w komórki dojrzałe. Przeprowadzone doświadczenie jest nie tylko jedną z pierwszych udanych prób stymulacji komórek macierzystych do różnicowania za pomocą czynników fizycznych. Przede wszystkim dostarcza ono ważnych informacji na temat procesów decydujących o powstaniu nabłonka dróg oddechowych. Wiedza ta może się więc przydać m.in. podczas leczenia wielu chorób układu oddechowego.
  2. W warunkach mikrograwitacji w komórkach macierzystych dochodzi do ekspresji innych białek niż przy normalnym ciążeniu. Naukowcy z Uniwersytetu Nowej Południowej Walii wierzą, że to właśnie to zjawisko stanowi przyczynę części tzw. chorób kosmicznych, w tym zmniejszenia gęstości kości czy zaniku mięśni. Dr Brendan Burns, Elizabeth Blaber i Helder Marcal posłużyli się bioreaktorem opracowanym przez NASA (ang. rotating-wall vessel, RWV), dzięki któremu można symulować mikrograwitację z niskiej orbity okołoziemskiej. Australijczycy wyizolowali i zidentyfikowali białka powstające w takich warunkach. Okazało się, że 75% białek mikrograwitacyjnych nie występowało w komórkach hodowanych w warunkach typowo ziemskich. Wiele prac poświęcono badaniu mikrograwitacji na poziomie układowym, np. wpływowi na układ odpornościowy, jednak nikt tak naprawdę nie przyglądał się jej oddziaływaniom na poziomie molekularnym i myślimy, że to spora luka. Naukowcy zaobserwowali np. nasilone powstawanie białek powodujących obniżenie gęstości kości (pewnego rodzaju białek morfogenetycznych kości, ang. bone morphogenic proteins, BMPs). Choć od dawna wiadomo było, że mikrograwitacja oddziałuje na gęstość kości, dotąd nikt nie miał pojęcia, na jakie konkretnie geny i białka wpływa. Akademicy z Nowej Południowej Walii wpadli też na trop innego ważnego zjawiska. Osłabione ciążenie ograniczało wytwarzanie przez komórki przeciwutleniaczy, które chronią przed uszkodzeniami DNA.
  3. Zespół kierowany przez prof. Karima Nayernia z Uniwersytetu w Newcastle opracował metodę pozwalającą na uzyskanie plemników z ludzkich embrionalnych komórek macierzystych. Nowa technika jest istotnym krokiem naprzód w badaniach nad biologią człowieka i niepowodzeniami rozrodu. Z przeprowadzonego eksperymentu wynika, że przekształcenie embrionalnych komórek macierzystych (ang. embryonic stem cells - ES) w plemniki wymaga wzbogacenia pożywki, w której są one hodowane, o zaledwie jeden związek. Jest nim kwas retinowy, jedna z pochodnych witaminy A. Pod jego wpływem we wnętrzu ES aktywowany zostaje program niemal identyczny z procesem wytwarzania plemników w organizmie mężczyzny. Podczas doświadczenia wykazano, że do rozwoju plemników konieczna jest obecność męskiego chromosomu płciowego, opisywanego literą Y, w wyjściowej komórce macierzystej. Próby wytworzenia męskich komórek rozrodczych z żeńskich ES regularnie kończyły się obumarciem komórek potomnych jeszcze przed przekształceniem do formy dojrzałej komórki płciowej. Ze względu na uwarunkowania prawne komórki uzyskane dzięki nowej metodzie nie mogą być wykorzystywane jako materiał do zapłodnienia in vitro w przypadku niepowodzeń rozrodu. Można się jednak spodziewać, że możliwość wytwarzania plemników w warunkach laboratoryjnych pozwoli na ścisłą obserwację tego procesu oraz zrozumienie czynników decydujących o jego powodzeniu. Zdobyta w ten sposób wiedza może się okazać bardzo pomocna dla par starających się o potomstwo.
  4. Naukowcy z Instytutu Whiteheada, instytucji naukowej należącej do MIT, wytworzyli komórki o właściwościach zbliżonych do zarodkowych komórek macierzystych, lecz niewykazujące podwyższonego ryzyka transformacji nowotworowej. Obiektem studium prowadzonego przez badaczy były tzw. indukowane komórki pluripotentne (ang. induced pluripotent stem cells - iPS). Posiadają one większość cech charakterystycznych dla embrionalnych komórek macierzystych, na czele z ich zdolnością do transformacji w dowolny typ komórek organizmu. Wielu naukowców uważa, że mogą one stać się niezwykle przydatnym narzędziem stosowanym w medycynie XXI wieku, szczególnie jako środek pozwalający na odbudowę uszkodzonych tkanek i narządów. Pomimo szeregu zalet, iPS nie są tworami idealnymi. Największy problem wynika z faktu, że do ich wytworzenia konieczne jest wstawienie do komórek zestawu czterech genów, które mogą po pewnym czasie wywołać transformację nowotworową. Badacze z MIT wymyślili jednak metodę, która pozwala na wstawienie kompletu genów koniecznych do wytworzenia iPS, lecz umożliwia ich późniejsze usunięcie z genomu. W doświadczeniu wykorzystano metodę zwaną Cre/LoxP. Wykorzystuje ona enzym zwany Cre, zdolny do wycinania z genomu fragmentów DNA "otoczonych" dwoma sekwencjami o nazwie LoxP, w normalnych warunkach nieobecnymi w genomie komórek ludzkich. Badacze z Instytutu Whiteheada wykorzystali to zjawisko i wstawili po jednym odcinku LoxP na początku i na końcu nici DNA zawierającej geny potrzebne do wytworzenia iPS. Wytworzenie komórek pluripotentnych przeprowadzono tak samo, jak w innych eksperymentach. Po pewnym czasie aktywowano jednak gen kodujący LoxP, dzięki czemu doszło do usunięcia obcego DNA z komórek. Znacznie ograniczono w ten sposób ryzyko, że uzyskane iPS przejdą przemianę w komórki nowotworowe. "Przy okazji" udowodniono też, że utrata genów niezbędnych do wytworzenia komórek pluripotentnych nie grozi ich "powrotem" do statusu komórek dojrzałych. Dokonane odkrycie ma niezwykle istotne znaczenie dla dalszych badań nad komórkami macierzystymi. Ryzyko transformacji nowotworowej było bowiem jedną z największych obaw związanych z ich stosowaniem w medycynie. Teraz, gdy udało się znacząco ograniczyć prawdopodobieństwo szkodliwej przemiany, możemy śmiało powiedzieć, że jesteśmy o krok bliżej od wprowadzenia komórek macierzystych do lecznictwa.
  5. Wytwarzanie hybrydowych zarodków ludzko-zwierzęcych, uzyskiwanych z komórek jajowych zwierząt wzbogaconych o ludzkie DNA, uznawane jest za jeden z najważniejszych celów nowoczesnej biologii. Niestety, pomimo starań wielu naukowców, żadnemu zespołowi nie udało się jeszcze osiągnąć upragnionego celu. Wygląda na to, że mieszanie ze sobą komórek ludzkich i zwierzęcych nie programuje komórki jajowej poprawnie, tłumaczy lakonicznie dr Robert Lanza, badacz specjalizujący się w hodowli hybrydowych zarodków. Niestety, naukowiec nie potrafi wyjaśnić, dlaczego tak się dzieje, choć geny odpowiedzialne za rozwój embrionu wydają się działać prawidłowo. Próby wytwarzania międzygatunkowych zarodków podejmowane są od około dziesięciu lat. Jest o co walczyć: embriony takie byłyby doskonałym źródłem komórek macierzystych, zaś badania na nich byłyby znacznie mniej kontrowersyjne od używania naturalnych embrionów ludzkich. Co więcej, organizmy samic wielu ssaków wytwarzają komórki jajowe w znacznie większej liczbie, niż ma to miejsce u kobiet. Aby wytworzyć hybrydowy embrion, teoretycznie wystarczy pobrać komórkę jajową dowolnego ssaka, usunąć z niej DNA i zastąpić je DNA ludzkiej komórki jajowej, a następnie zapłodnić ją przy użyciu ludzkiego plemnika. Niestety, w praktyce jest znacznie gorzej: zarodki ludzko-mysie obumierają już po pierwszym podziale komórkowym, zaś ludzko-krowie i ludzko-królicze - niewiele później. Mieliśmy piękne malutkie hybrydowe zarodki, lecz to wciąż nie działało, nieważne jak ciężko pracowaliśmy, żali się dr Lanza. Badacz nie złożył jednak broni i sięgnął po najnowszą broń: globalną analizę ekspresji genów, czyli metodę pozwalającą na monitorowanie aktywności praktycznie wszystkich genów obecnych w danej komórce w różnych fazach dojrzewania embrionu. Przeprowadzone przez dr. Lanzę analizy wykazały, że hybrydy ludzko-zwierzęce charakteryzują się zaburzeniami aktywności licznych genów, co prowadzi do przedwczesnego obumierania zarodków. Nie to jest jednak najdziwniejsze. Okazuje się, że obumierają także hybrydy ludzko-ludzkie, choć w ich przypadku sekwencja "uruchamiania" i "wyłączania" poszczególnych genów wydaje się zachodzić prawidłowo. Dlaczego? Tego, niestety, nie wie nikt...
  6. Ludzkie embrionalne komórki macierzyste mogą wywołać odpowiedź immunologiczną u myszy - donoszą naukowcy z Uniwersytetu Stanforda. Odkrycie obala mit o immunologicznym "uprzywilejowaniu" tego typu komórek i może utrudnić ich zastosowanie w terapii u ludzi. Embrionalne komórki macierzyste (ESC, od ang. Embryonic Stem Cells) to populacja pobranych z zarodka komórek zdolnych do podziału, w wyniku którego jedna z komórek potomnych jest zdolna do różnicowania w komórki należące do dowolnej tkanki, a druga zachowuje właściwości ESC. Od kilku lat są one wyjątkowo intensywnie badane ze względu na możliwość ich wykorzystania np. w celu odtworzenia uszkodzonych organów lub wyhodowania całego narządu od nowa w warunkach laboratoryjnych, np. z myślą o ich użyciu jako materiał do przeszczepu. Choć potencjał komórek macierzystych jest bez wątpienia ogromny, ich badania nigdy nie były proste. Najnowsze odkrycie amerykańskich badaczy dodatkowo utrudnia ich ewentualne użycie w przyszłości. Eksperyment, poprowadzony przez dr. Josepha Wu, polegał na wszczepieniu ludzkich embrionalnych komórek macierzystych do ciała myszy. Część zwierząt poddano wcześniej tzw. immunosupresji, czyli osłabieniu funkcji odpornościowych. Po implantacji komórek były one obserwowane dzięki tzw. bio-imagingowi, technice umożliwiającej śledzenie losów pojedynczych oznakowanych komórek wewnątrz organizmu żywego zwierzęcia. Pozwoliło to na ocenę procesów zachodzących w organizmie w czasie rzeczywistym. Pozwala to na osiągnięcie przewagi w stosunku do stosowanych wcześniej metod, które wymagały pozbawienia zwierzęcia życia w celu pobrania preparatów do badania. Eksperyment pokazał, że ESC wszczepione myszom z prawidłowo funkcjonującym systemem immunologicznym były niszczone po 7-10 dniach. Zwierzęta, które poddano immunosupresji, nie odrzucały przeszczepu, a podane komórki nie tylko przeżywały, ale także dzieliły się. Kolejne dawki komórek były przyjmowane przez organizmy zwierząt z upośledzeniem odporności, zaś te, których nie poddano immunosupresji, odrzucały każdą kolejną porcję ESC coraz silniej. Oznacza to, że organizm tych ostatnich wykazywał tzw. pamięć immunologiczną, pozwalającą na błyskawiczną i efektywną reakcję na kolejny kontakt z ciałem obcym, z którym zetknął się już wcześniej. Dr Wu ocenia wyniki jako przekonujące: opierając się na tych wynikach uważamy, że przeszczep tych komórek do ciała człowieka także wywołałby odpowiedź immunologiczną. Na razie nie wiadomo, jaki dokładnie czynnik powoduje reakcję odpornościową, lecz eksperyment dostarczył także bardziej optymistycznych informacji: wystarczy standardowa terapia immunosupresyjna, taka sama jak te stosowane przed przyjęciem przeszczepu, by zapobiec nadmiernej reakcji ciała biorcy na transplantację. Mimo to wiadomość o tym, że przeszczep ESC może zostać odrzucony jak każdy inny, jest zaprzeczeniem obowiązujących dotychczas teorii. Może to oznaczać powstanie nowych problemów na drodze do powszechnego zastosowania komórek macierzystych w terapii.
  7. Po raz pierwszy w historii naukowcom udało się skutecznie zastymulować embrionalne komórki macierzyste do różnicowania w kierunku komórek beta trzustki. Komórki beta jako jedyne w organizmie są zdolne do produkcji insuliny - hormonu odpowiedzialnego za obniżenie poziomu glukozy we krwi. Brak lub niedobór jej aktywności jest przyczyną cukrzycy, czyli niekontrolowanego wzrostu poziomu glukozy we krwi. Tzw. cukrzyca typu I jest w większości przypadków związana z uszkodzeniem komórek beta - nie dziwi więc, że ich odtworzenie może być doskonałym środkiem trwałego leczenia tej choroby. Rozwiązanie problemu cukrzycy jest wielkim wyzwaniem dla medycyny - w samych tylko Stanach Zjednoczonych na cukrzycę typu I chorych jest aż 2 mln osób. Badania przeprowadzone przez firmę biotechnologiczną Novocell są pierwszą skuteczną próbą przeprowadzenia różnicowania embrionalnych komórek macierzystych w kierunku komórek beta. Ze względów etycznych badań nie przeprowadzono na ludziach, lecz wykorzystano jedynie ludzkie komórki embrionalne (ESC - ang. Embryonic Stem Cells), wszczepione odpowiednio dobranym myszom. Zwierzęta te miały upośledzony układ odpornościowy, co zapobiegało odrzuceniu przeszczepu, do którego u zdrowych myszy doszłoby natychmiast po transplantacji. Już kilka miesięcy temu udało się poznać część sygnałów biochemicznych regulujących rozwój ESC w kierunku komórek beta. Udało się także wytworzyć komórki zdolne do produkcji insuliny, lecz nie wykazywały one drugiej równie ważnej cechy komórek beta: reakcji na poziom glukozy w otoczeniu. Bez tego niemożliwe byłoby zastosowanie takich komórek do regulacji poziomu glukozy we krwi pacjenta. Ostatni eksperyment przyniósł przełom w tej dziedzinie. W związku z niepowodzeniem, naukowcy postanowili pokonać problem "okrężną drogą". Zamiast próby hodowli w pełni funkcjonalnych komórek beta dokonali tego, co udało się zrobić wcześniej: doprowadzono do różnicowania ESC do komórek endodermy trzustki. Odpowiadają one tkance istniejącej u ludzi w 6.-9. tygodniu życia płodowego. Z takich komórek powstają z kolei komórki beta. Resztę zadania powierzono samej naturze: niedojrzałe komórki wszczepiono do mysiej trzustki z nadzieją, że pozostałe sygnały zostaną dostarczone przez naturalne mikrośrodowisko wewnątrz tego organu. Po trzydziestu dniach po implantacji, naukowcy odkryli obecność we krwi ludzkiego peptydu C - produktu pośredniego świadczącego o rozpoczęciu syntezy insuliny. Po kolejnym miesiącu stwierdzono wzrost ilości peptydu C po podaniu glukozy, co świadczyło o zdolności do syntezy ludzkiej insuliny w odpowiedzi na poziom tego cukru. Dokładnie taki cel postawili przed sobą pracownicy Novocellu. Ostatnim etapem eksperymentu było podanie myszom toksyny, która selektywnie zabija mysie komórki beta, pozostawiając ich ludzki odpowiednik przy życiu. Wynik doświadczenia (tzn. utrzymanie zdolności do regulacji poziomu glukozy i produkcja ludzkiej insuliny) potwierdził ostatecznie, że myszy po przeszczepie miały w swoich trzustkach komórki beta pochodzenia ludzkiego. Teresa Ku, pracująca dla kalifornijskiego Instytutu Badawczego Beckmana, podkreśla ważność tego odkrycia dla całej gałęzi nauki związanej z komórkami macierzystymi. Jej zespół również pracował nad wytworzeniem komórek beta z ESC, lecz nie odniósł do tej pory sukcesu. Z kolei przedstawiciele Novocellu są w trakcie konsultacji z amerykańskim urzędem odpowiedzialnym m.in. za rejestrację leków (FDA - Food and Drug Administration). Rozmowy mają na celu ustalenie dodatkowych testów bezpieczeństwa przed ewentualnym rozpoczęciem analogicznych testów na ludziach. Dotychczas bowiem nie wiadomo m.in., czy wszczepione myszom komórki są zdolne do podziałów, czy też po pewnym czasie obumrą i potrzebna będzie kolejna transplantacja. Wyniki przełomowych badań opublikowano w najnowszym wydaniu czasopisma Nature Biotechnology.
  8. Pobieranie embrionalnych komórek macierzystych wzbudza kontrowersje zarówno wśród samych naukowców, jak i zwykłych ludzi. Z tego powodu Ian Wilmut, "ojciec" sławnej owcy Dolly, zaproponował, aby wprowadzać ludzkie DNA do zwierzęcych komórek jajowych. W ten sposób uniknięto by przynajmniej części obiekcji natury etycznej i łamania prawa. Komentarz Szkota ukazał się w piśmie Nature Reports Stem Cells. Genetyk zaproponował, aby pobierać jądro z chorych komórek ludzkich, a następnie wstrzykiwać je do zwierzęcych komórek jajowych pozbawionych uprzednio jądra. W jednym przypadku na osiem taki twór zaczyna rosnąć i dzielić się. Jest w dodatku na tyle duży, że można na nim testować eksperymentalne leki, bez potrzeby niszczenia płodu. Wilmut uważa, że takie rozwiązanie znacznie ulepszyłoby obecnie stosowane metody, czyli testowanie medykamentów na myszach. Ukończenie tych eksperymentów zajmuje bowiem całe lata, a tak naprawdę komórki macierzyste potrzebują tylko kilku dni, by osiągnąć etap rozwoju konieczny do badania leków. W ciągu jednego roku można by w tym samym czasie przetestować tysiące składników i to w dodatku tym samym kosztem, co w przypadku garstki eksperymentów z udziałem myszy. Procedura zaproponowana przez Szkota ma kilka plusów. Jednym z nich jest oczywiście obniżenie kosztów, ale to nie wszystko. Po pierwsze, uzyskiwano by wyniki badań na tkance ludzkiej, a nie zwierzęcej. Po drugie, uniknięto by procedury pobierania komórek jajowych od kobiet. Część ekspertów, m.in. Kevin Eggan z Uniwersytetu Harvarda, już pochwaliła pomysł.
×
×
  • Dodaj nową pozycję...