Znajdź zawartość
Wyświetlanie wyników dla tagów 'dwutlenek krzemu' .
Znaleziono 6 wyników
-
Przez lata uważano, że piramidy egipskie zbudowano z wyciosanych w kamieniu olbrzymich bloków, które następnie niewolnicy i inni budowniczowie wciągali po rampach i układali jeden na drugim. Dwadzieścia lat temu Joseph Davidovits, dyrektor Instytutu Geopolimerów w St. Quentin, stwierdził jednak, że bloki są wykonane z pewnego rodzaju betonu, w skład którego weszły, m.in.: wapień, glina, wapno oraz woda. Jeśli piramidy rzeczywiście zostały odlane, ktoś w dzisiejszych czasach powinien udowodnić to bez żadnych wątpliwości, pracując kilka godzin z mikroskopem elektronowym — skomentował Michel Barsoum, urodzony w Egipcie profesor Wydziału Inżynierii i Materiałoznawstwa Dexel University. Zdobywanie dowodu zajęło mu trochę więcej czasu niż kilka godzin. Po 1,5 roku badań i zastosowaniu elektronowego mikroskopu skaningowego jego zespół stwierdził, że drobne fragmenty pobrane z zewnętrznej i wewnętrznej części bloku są rzeczywiście zastygłą masą zawierającą wapień. Materiałem wiążącym wapienny cement był albo dwutlenek krzemu, albo minerał krzemowy obfitujący w wapń oraz magnez. W jednej z próbek odnaleziono sfery z dwutlenku krzemu. Bloki są dużo wilgotniejsze niż wapień spotykany w okolicach Gizy. Poza tym mają one strukturę amorficzną, co oznacza, że atomy rozmieszczone są w sposób nieregularny, a skała osadowa powstająca w sposób naturalny jest zazwyczaj skrystalizowana. Bloki nie mogły być w żaden sposób wyciosane ze skały. To wyjaśniłoby kilka, choć nadal nie wszystkie, spornych kwestii. Po pierwsze, jak to się stało, że poszczególne elementy budowli są tak doskonale do siebie dopasowane, że nie udałoby się między nie wcisnąć nawet włosa. Po drugie, skoro bloki wykuwano, czemu w okolicach Gizy nie odnaleziono ani jednego miedzianego dłuta. Co oczywiste, nie można było natrafić na narzędzia żelazne, bo ten metal Egipcjanie poznali dość późno. Można by też wykluczyć konieczność zastosowania technik nieznanych we współczesnych czasach czy pomoc kosmitów, by udało się wynieść skały wieńczące szczyty piramid. Niektórzy eksperci uważają, że beton egipski był materiałem bardziej ekologicznym od betonu stosowanego obecnie. Jego trwałość została sprawdzona przez historię, a koszt wytworzenia także bije na głowę inne znane metody budowlane. Tak więc w przyszłości będzie się można najprawdopodobniej pochwalić domkiem wybudowanym w technologii staroegipskiej...
- 12 odpowiedzi
-
- Michel Barsoum
- struktura amorficzna
- (i 8 więcej)
-
Nanocząstki przyspieszają tętno i zmieniają rytm serca
KopalniaWiedzy.pl dodał temat w dziale Zdrowie i uroda
Niemieccy naukowcy wykazali, że nanocząstki bezpośrednio wpływają na tętno i rytm serca. Wyniki badań zespołu z Technicznego Uniwersytetu Monachijskiego oraz Centrum Helmholtza w Monachium ukazały się w piśmie ACSNano. Akademicy podkreślają, że w związku z rosnącym zapotrzebowaniem na nanocząstki w medycynie i przemyśle, należy stwierdzić, jak oddziałują one na funkcje organizmu. Badania na pacjentach z chorobami serca od dawna wskazywały, że cząstki stałe z zanieczyszczonego powietrza wpływają niekorzystnie na układ krążenia. Dotąd trudno było jednak ustalić, czy nanocząstki prowadzą do uszkodzeń w wyniku bezpośredniego działania, czy też dochodzi do tego pośrednio, np. w wyniku zmian metabolicznych lub reakcji zapalnych. By rozstrzygnąć tę kwestię, Niemcy posłużyli się tzw. modelem Langendorffa – badanie przeprowadzano na izolowanym, perfundowanym sercu szczura (perfuzja to zabieg, którego skutkiem ma być wywołanie obiegu krwi w wyizolowanym narządzie). Okazało się, że serce reagowało na niektóre rodzaje powszechnie wykorzystywanych nanocząstek podwyższonym tętnem, arytmią i zapisem EKG typowym dla chorób tego narządu. Zastosowaliśmy serce jako czujnik. W ten sposób mogliśmy sprawdzić, czy specyficzne nanocząstki oddziałują na pracę tego mięśnia. Dotąd nie odwoływano się do takiej opcji badawczej – podkreśla z dumą prof. Reinhard Nießner. Naukowcy zmodyfikowali model Langendorffa, dzięki czemu mogli ustalić, w jaki sposób nanocząstki kształtują tętno. Andreas Stampfl i Nießner podejrzewają, że najprawdopodobniej główną rolę w tym procesie odgrywa noradrenalina, która po wydzieleniu z zakończeń nerwowych wnikających do ściany serca przyspiesza jego rytm. Niemcy sądzą, że nanocząstki mogą też uszkadzać ośrodkowy układ nerwowy, ponieważ noradrenalina jest wykorzystywana jako neuroprzekaźnik pnia mózgu. Zespół Stampfla testował działanie następujących nanocząstek: sadzy, tlenku tytanu(IV), węgla powstającego w silniku o zapłonie iskrowym, dwutlenku krzemu, aerosilu (wypełniacza z tabletek) oraz polistyrenu. Sadza, węgiel z silników iskrowych, tlenek tytanu(IV) oraz dwutlenek krzemu zwiększały tętno aż o 15%, a zapis EKG nie normalizował się nawet po zakończeniu ekspozycji na nanocząstki. Aerosil i polistyren nie wpływały na działanie serca. Zespół z Monachium podkreśla, że obecnie nanocząstki coraz częściej testuje się jako przenośniki leków do konkretnych miejsc, np. guza. Większość prototypów takich nanopojemników bazuje na węglu lub na krzemianach. Teraz dopiero widać, że to niekoniecznie dobre rozwiązanie. Duża powierzchnia cząsteczki tlenku tytanu(IV), która zapewnia wysoki współczynnik załamania światła, sprawia, że substancja ta jest często wykorzystywana w śnieżnobiałych farbach oraz jako filtr chemiczny w kosmetykach do opalania. Sadzę dodaje się do gumy do produkcji opon. Widać więc jak na dłoni, że nieświadomie cały czas stykamy się z jakimiś nanocząstkami. Serce stanowi szczególnie dobry model do badań nanocząstek, gdyż ma m.in. własny generator impulsów. Poza tym zmiany w jego działaniu łatwo rozpoznać dzięki tętnu i elektrokardiogramowi.-
- model Langendorffa
- zakończenia nerwowe
- (i 8 więcej)
-
Specjaliści głowią się nad tym, co zrobić z nadmiarem dwutlenku węgla i zyskać kontrolę nad zmianami klimatycznymi. Jedno z najnowszych rozwiązań zakłada wprowadzenie nanocząstek do podziemnych zbiorników jeszcze przed ich wypełnieniem. Nanocząstki połączyłyby się z gazem w stanie nadkrytycznym (fluidem), tworząc lepką pianę, która zapobiegałaby powstawaniu wycieków. Stan nadkrytyczny to stan danej substancji, w którym ciśnienie i temperatura są wyższe od ciśnienia i temperatury punktu krytycznego (jest to wymuszony stan między cieczą a gazem). Analizując dostępne teorie, Steven Bryant z Uniwersytetu Teksańskiego w Austin doszedł do wniosku, że pokryte poli(tlenkiem etylenu) nanocząstki dwutlenku krzemu zwiążą się z kroplami dwutlenku węgla. Należało to jednak potwierdzić. Podczas testów Amerykanie posłużyli się n-oktanem, cieczą zachowującą się jak CO2 w stanie nadkrytycznym. Rzeczywiście utworzyła się piana, która zaczopowała wszystkie pęknięcia w skale. Po pierwszych sukcesach zespół Bryanta planuje kolejny etap eksperymentu z wykorzystaniem nadkrytycznego dwutlenku węgla.
-
- stan nadkrytyczny
- poli(tlenek etylenu)
- (i 7 więcej)
-
Grafen to niezwykle obiecujący materiał, jednak jest bardzo wrażliwy na działanie czynników zewnętrznych, które mogą negatywnie wpływać na jego użyteczne właściwości. Dlatego też niezwykle ważnym jest znalezienie podłoża pozwalającego na pracę z grafenem i zachowanie jego interesujących nas cech. Nawet samo podłoże może niekorzystanie wpłynąć na grafen. Naukowcy z Wydziału Nauk materiałowych Lawrence Berkeley National Laboratory oraz profesorowie z University of California, Berkeley, połączyli siły w celu znalezienia najlepszego substratu dla grafenu. Każdy substrat wpływa na właściwości grafenu, zatem najlepszą metodą jego badania jest nałożenie go na substrat. Problem jednak w tym, że taki grafen jest niestabilny gdy zostanie poddany badaniu skaningowym mikroskopem tunelowym, gdyż grafenowa membrana może zacząć drgać pod wpływem końcówki mikroskopu - mówi Regis Decker z uniwersytetu w Hamburgu. W listopadzie ubiegłego roku naukowcy z Columbia University poinformowali, że grafen osadzony na podłożu z azotku boru cechuje się znacznie lepszą mobilnością elektronów niż grafen na dwutlenku krzemu. Dobry substrat dla grafenu powinien mieć szerokie pasmo wzbronione i nie powinien mieć wolnych wiązań, by nie zmieniać struktury elektronicznej grafenu. Musi być też bardzo płaski. Azotek boru to dobry kandydat - dodaje Decker. Związek ten ma i tę pożądaną cechę, że ułożenie atomów azotu i boru jest bardzo podobne do ułożenia węgla w grafenie. W celu połączenia grafenu z azotkiem boru najpierw za pomocą taśmy klejącej pobrano z azotku boru cienkie płatki, które osadzono na dwutlenku krzemu wyhodowanym na krzemie wzbogaconym innym pierwiastkiem. Działał on jak bramka. Grafen uzyskano metodą chemicznego osadzania z fazy gazowej na miedzi. Dzięki zastosowaniu Cu atomy węgla samodzielnie uformowały dwuwymiarową strukturę. Następnie grafen przeniesiono za pomocą miękkiego plastiku na azotek boru i uziemiono za pomocą elektrody z tytanku złota. Stworzono w ten sposób trzy próbki grafenu na azotku boru, który porównywano z grafenem na dwutlenku krzemu. Michael Crommie, szef jednej z grup badawczych wspomina, że już poprzednio testowano grafen na SiO2 i udowodniono, że gorsze od możliwych właściwości elektryczne grafenu nie wynikają z niedoskonałości czy uszkodzeń węglowej struktury, ale z zanieczyszczeń występujących w krzemie. Jednym z ich źródeł są zanieczyszczenia uwięzione pomiędzy grafenem a krzemem, podczas nakładania grafenu. Są wśród nich bąbelki powietrza czy molekuły wody. Gdy nakładaliśmy grafen na azotek boru szukaliśmy tych atmosferycznych zanieczyszczeń, ale nie stwierdziliśmy, by wywierały one jakiś wpływ. To dobra wiadomość, bo oznacza ona, że grafenowe urządzenia nie muszą być wykonywane w próżni - stwierdza Victor Brar. Szczegółowe badanie ujawniły szereg różnic pomiędzy grafenem na azotku boru i na dwutlenku krzemu. Grafen osadzony na pierwszym z tych materiałow jest znacznie bardziej płaski, a różnice w wysokości poszczególnych fragmentów nie przekraczają 40 pikometrów, gdy tymczasem w grafenie na dwutlenku krzemu sięgają one 1200 pikometrów. Pod względem elektronicznym różnice w gęstości ładunku w grafenie na azotku boru są niemal niezauważalne. Jak widać na załączonych grafikach, wyniki obu pomiarów - topograficznego i elektronicznego - są znacznie bardziej jednorodne w przypadku grafenu na azotku boru. W końcu bardzo istotna cecha, jaką jest pasmo wzbronione, które, przypomnijmy, naturalnie w grafenie nie występuje. Jako że siatka krystaliczna [azotku boru - red.] jest bardzo podobna do siatki grafenu, teoretycy przewidują, że powoduje ona pojawienie się pasma wzbronionego w grafenie - mówi Decker. System złożony z grafenu i azotku boru jest w wielu zastosowaniach znacznie lepszy od każdego innego systemu. Charakteryzuje się mniejszą liczbą zanieczyszczeń, znacznie bardziej równomiernym rozłożeniem ładunku, mniejszymi różnicami w wysokości i dużo lepszą stabilnością. Podsumowując, jest czystszym środowiskiem do badania właściwości grafenu. Azotek boru to naprawdę cudowny materiał dla praktycznych zastosowań grafenu - powiedział Michael Crommie.
-
W Szpitalu Dziecięcym Alder Hey w Liverpoolu zabawki pokrywa się szkłem wodnym. Podczas testów terenowych udowodniono, że ma ono właściwości antybakteryjne. Dotąd poważnie chorym maluchom nie pozwalano bawić się szpitalnymi klockami czy lalkami. Obawiano się przenoszenia patogenów między pacjentami, z których część zażywa obniżające odporność leki immunosupresyjne. Szkło wodne jest bezpieczne i nieczynne biologicznie/chemicznie. Tworzy na powierzchni przedmiotów niewidzialną, giętką powłokę, dzięki czemu zapobiega przyleganiu brudu i bakterii. Co szczególnie ważne, nie daje szans lekoopornemu gronkowcowi złocistemu (Staphylococcus aureus). Przedstawiciele szpitala opowiadają, że niektóre zabawki trzeba było usunąć ze względu na trudności z utrzymaniem ich w czystości. Są to jednak sprzęty bardzo istotne dla dzieci, dlatego warto było pomyśleć o alternatywnych rozwiązaniach. Traktujemy zabawki podobnie jak sprzęt medyczny, który musi być czysty i jałowy. Po pokryciu zabawki szkłem wodnym nie widać żadnej różnicy. Materiał ten ma wielki potencjał do wykorzystania nie tylko w warunkach szpitalnych – tłumaczy Pauline Bradshow, dyrektor operacyjny ds. zakażeń. Trzymiesięczne testy szkła wodnego w innym szpitalu wykazały, że pokrycie nim np. podłóg, blatów szafek, wanien, guzików w windzie czy umywalek ogranicza wzrost bakteryjny o 25-50%. W Southport porównywano powierzchnie pokryte szkłem wodnym wytwarzanym przez niemiecką firmę Nanopool z powierzchniami kontrolnymi. Personelowi sprzątającemu nie powiedziano, że przeprowadzono jakieś specjalne zabiegi, dlatego czyszczenie odbywało się zgodnie z wcześniejszymi procedurami. Naukowcy co tydzień pobierali wymazy z rozmaitych rejonów placówki. Okazało się, że różnica w liczbie bakterii na powierzchniach ze szkłem wodnym i bez niego była istotna statystycznie. Powłokę firmy Nanopool można łatwo i bez specjalnego zamieszania stosować w uczęszczanych obszarach szpitala – uważają autorzy raportu. Pierwotnie szkło wodne, czyli nasycony roztwór krzemianu sodu, zastosowano jako zabezpieczenie przeciwko graffiti oraz w ramach przeciwogniowej impregnacji drewna. Przedstawiciele producenta ujawnili, że podczas eksperymentu w przetwórni mięsa mycie blatów z powłoką gorącą wodą dawało te same rezultaty, co potraktowanie zwykłych powierzchni wybielaczem. Powłoka ma grubość liczoną w nanometrach, a oddziaływania elektrostatyczne w nasprajowanym filmie odpychają wodę i brud. Bakterie nie mogą się tu namnażać tak skutecznie jak zwykle. W Liverpoolu zostanie też przetestowana nowa metoda czyszczenia, która nie niweczy antybakteryjnych właściwości szkła wodnego. Dlatego żrące preparaty mają być zastąpione przyjaznymi dla skóry i pokarmów biocydami.
-
Łuski ryżu zawierają duże ilości dwutlenku krzemu (SiO2), będącego ważnym składnikiem betonu. Od kilkudziesięciu lat próbowano uzyskać ryżowy cement, lecz po spaleniu powstawał popiół w zbyt dużym stopniu zanieczyszczony węglem, by dało się go spożytkować. Z problemem poradził sobie zespół Rajana Vempatiego z ChK Group z Plano. Nad rozwiązaniem warto było popracować, gdyż przy produkcji 1 tony zwykłego cementu do atmosfery ulatywała tona dwutlenku węgla, który jest przecież gazem cieplarnianym. Na całym świecie na cementownie przypada 5% generowanego przez człowieka CO2. Amerykanie zauważyli, że podgrzewanie łusek ryżowych do temperatury 800 stopni Celsjusza w pozbawionym tlenu piecu pozwala usunąć węgiel. W ten prosty sposób otrzymuje się czysty dwutlenek krzemu. Powstaje przy tym taka ilość dwutlenku węgla, która zostaje rocznie wykorzystana przez pola ryżowe. Dodanie popiołu ryżowego powoduje, że beton staje się mocniejszy i bardziej odporny na korozję. Zespół Vempatiego przypuszcza, że można by uzyskać doskonałe rezultaty, zastępując nim do 20% cementu zużywanego przy budowie drapaczy chmur, mostów i innych obiektów powstających w pobliżu wody. Obecnie Teksańczycy przygotowują się do testów, które pozwolą dopracować nową metodę. Jeśli wszystko pójdzie po ich myśli, powstanie dużo większy piec, wytwarzający do 15 tys. ton ryżowego popiołu rocznie. Na technologii z pewnością skorzystają kraje rozwijające się, których gospodarka bazuje na ryżu, w tym Chiny czy Indie. Nawet przy stawce 500 dol. za tonę jest to wielomiliardowa gałąź przemysłu – podsumowuje Vempati.
- 6 odpowiedzi
-
- dwutlenek krzemu
- beton
-
(i 6 więcej)
Oznaczone tagami: