Znajdź zawartość
Wyświetlanie wyników dla tagów 'ciało stałe' .
Znaleziono 4 wyniki
-
Zapożyczone od dzbaneczników: niezwilżalność doskonała
KopalniaWiedzy.pl dodał temat w dziale Ciekawostki
Wzorując się na liściach pułapkowych dzbaneczników, inżynierowie stworzyli materiał niezwilżalny w stosunku do niemal każdej cieczy, także olejów i krwi. Co więcej, sprawdza się on nawet w ciężkich warunkach, tj. przy wysokim ciśnieniu czy temperaturach zamarzania. Wcześniej naukowcy koncentrowali się na liściach lotosu, które zainspirowały serię materiałów superhydrofobowych. Nie sprawdzały się one jednak w przypadku cieczy organicznych lub złożonych, które mają niższe napięcie powierzchniowe niż woda i pod wpływem lekkiego nacisku zaczynają wsiąkać w powierzchnię. Sytuacja nie była patowa, wystarczyło bowiem poszukać innego przykładu z natury, by z łatwością rozwiązać ten problem. Jak wyjaśnia prof. Joanna Aizenberg ze Szkoły Inżynierii i Nauk Stosowanych Uniwersytetu Harvarda, na liściach pułapkowych dzbaneczników znajdują się drobne guzki utrzymujące na miejscu warstwę wody, która oddziałuje na cząsteczki oleju (chodzi o oddziaływania między cząsteczkami polarnymi i niepolarnymi). W takiej sytuacji tłuszcze pokrywające stopy owadów nie na wiele się zdają i ofiara wpada wprost do soków trawiennych drapieżnej rośliny. Zespół z Harvardu uważa, że nowy materiał znajdzie zastosowanie w transporcie paliw, technologiach zapobiegania oblodzeniu i porastaniu kadłubów statków czy w procedurach związanych z wykorzystaniem cieczy biomedycznych (np. w cewnikach). Zainspirowani przez dzbaneczniki, opracowaliśmy nową powłokę, która przewyższa swoje naturalne i syntetyczne odpowiedniki, oferując proste i wszechstronne rozwiązanie w zakresie repelencji cieczy i ciał stałych – podkreśla Aizenberg. W przypadku lotosu wodoodporność jest skutkiem specyficznego ukształtowania powierzchni liści. Tworzą się poduszki powietrzne, na których skrapla się woda. Efekt lotosu zanika jednak, gdy powierzchnia jest uszkodzona albo działają ekstremalne warunki. Wtedy krople przylegają do niej albo wsiąkają, zamiast spływać. Poza tym okazało się, że wyprodukowanie materiałów wzorowanych na lotosie jest drogie i trudne. Dzbaneczniki nie bazują na wypełnionych powietrzem nanozadziorach. Na powierzchni liścia pułapkowego tworzy się po prostu warstwa wody. Tak-Sing Wong z laboratorium Aizenberg porównuje sytuację owada do samochodu wpadającego w poślizg na drodze pokrytej cienką warstewką deszczówki. Biorąc przykład z rośliny, Amerykanie zaprojektowali nanoporowaty materiał, pokryty cieczą spełniającą funkcję smaru. Nadano mu nazwę SLIPS (od Slippery Liquid-Infused Porous Surfaces). SLIPS wykazuje praktycznie zerową retencję, gdyż potrzeba bardzo drobnego przechylenia, by ciecz lub ciało stałe zaczęło się ześlizgiwać i odpadło od powierzchni – twierdzi Aizenberg. Ciecz w takiej roli ma jeszcze jeden duży plus. Jest właściwie [idealnie] gładka i wolna od defektów. Nawet gdy uszkodziliśmy próbkę, rysując ją nożem, powierzchnia niemal natychmiast się naprawiała i właściwości "odstraszające" zostały zachowane. W odróżnieniu od lotosu, SLIPS można wyprodukować w wersji przezroczystej, przez co jest on idealny do celów optycznych i w aplikacjach samoczyszczących – dodaje Wong. Akademicy ujawniają, że efekt bliski wyeliminowania tarcia utrzymuje się także w trudnych warunkach: przy wysokim ciśnieniu (675 atmosfer, co odpowiada zanurzeniu na głębokość 7 km), wilgotności i niskich temperaturach. Zespół przeprowadził eksperyment na zewnątrz podczas burzy śnieżnej i SLIPS zapobiegał osadzaniu lodu. Do produkcji SLIPS można wykorzystać jakikolwiek porowaty materiał. Nawet mrówki się na nim ślizgają, całkiem jak na naturalnym wzorcu z dzbanecznika. Obecnie trwa proces patentowania wynalazku.- 6 odpowiedzi
-
- dzbanecznik
- Joanna Aizenberg
-
(i 5 więcej)
Oznaczone tagami:
-
Przechwycili dziewicze powietrze znad Amazonki
KopalniaWiedzy.pl dodał temat w dziale Nauki przyrodnicze
Pracując w odległych rejonach Niziny Amazonki na północ od Manaus, naukowcy wyizolowali wytworzone w ramach ekosystemu lasu deszczowego cząstki aerozolu atmosferycznego, które są stosunkowo wolne od wpływu człowieka. Studium opublikowano w piśmie Science. Aerozole atmosferyczne odgrywają bardzo ważną rolę. Mogą szkodzić naszemu zdrowiu, a także kształtować klimat, pochłaniając lub odbijając promieniowanie słoneczne i oddziałując na proces tworzenia chmur. Wyniki zespołu prof. Scota Martina z harvardzkiej Szkoły Inżynierii i Nauk Stosowanych mogą pomóc w stworzeniu modelu, który pokaże, jak zmiany w obrębie Niziny Amazonki wpłyną na regionalną i globalną atmosferę. Martin wyjaśnia, że zanim powietrze dotarło do aparatury badawczej, w ciągu 2 dni pokonało 1600 km. By uniknąć skażenia, eksperymenty prowadzono w środkowej Amazonii podczas trwającej od stycznia do marca pory deszczowej. Okresy pożarów i wycinki przypadają na porę suchą, w dodatku mają miejsce głównie w części południowej. Naukowcy pobierali próbki ze szczytu 40-metrowej wieży. Okazało się, że najbardziej istotne dla amazońskiego klimatu cząstki submikroskopowe można wywieść od atmosferycznego utleniania emitowanych przez rośliny lotnych związków organicznych (w ten sposób powstają wtórne aerozole organiczne). Takie izolowane cząsteczki udało się zaobserwować po raz pierwszy. Kiedy pobierasz cząstki na półkuli północnej i w innych rejonach antropogenicznych, [...] widoczne jest zanieczyszczenie sadzą, azotanami itp. Na dziewiczej Nizinie Amazonki naukowcy wykryli w centymetrze sześciennym kilkaset cząstek aerozolu (cieczy i ciał stałych, czyli pyłów), podczas gdy na terenach wysoce uprzemysłowionych ich stężenie to dziesiątki tysięcy cząstek na cm3. Z tego powodu klimatolodzy nie są w stanie odnotować jakiejkolwiek zmiany, gdy pojawią się dodatkowe cząstki pochodzenia naturalnego bądź sztucznego. Naukowcy dysponują sporą wiedzą na temat samego cyklu, ale chodziło o ustalenie wkładu ilościowego poszczególnych źródeł cząstek. [...] Nowe dane pomogą nam i naszym kolegom zrozumieć i określić ilościowo współzależność obiegu areozoli i wody w nienaruszonym systemie klimatycznym – wyjaśnia Ulrich Pöschl z Instytutu Chemii Maxa Plancka. Wg niego, jest to warunkiem wstępnym wiarygodnego modelowania i przewidywania zaburzeń antropogenicznych i ich wpływu na globalne zmiany. Międzynarodowy zespół ustalił, że powietrzu nad Niziną Amazonii większość (ponad 85%) typowych dla klimatu cząstek stanowiły cząstki bez zanieczyszczeń. Niskie stężenia areozoli i stosunkowo spora zawartość wtórnych areozoli organicznych oznacza, że oddziaływania między cząstkami, chmurami i opadami atmosferycznymi są w okolicach dziewiczych zupełnie inne niż w rejonach morskich i bardziej zanieczyszczonych.-
- antropogeniczny
- rejon
-
(i 7 więcej)
Oznaczone tagami:
-
Naukowcy z uniwersytetu w Wiedniu opracowali metodę pozwalającą na bezpośrednie śledzenie ruchu atomów w ciałach stałych. Prace te mają olbrzymie znacznie, gdyż to właśnie ruch atomów powoduje starzenie się materiałów i utratę ich właściwości. W swoich badaniach Austriacy wykorzystali Europejski Ośrodek Synchrotronu Atomowego w Grenoble. Uczeni zbadali, w jakich kierunkach atomy się poruszają, jak daleko i jaki wpływ na ruch ma temperatura. Odkryliśmy, że w temperaturze 270 stopni Celsjusza atomy w sieci krystalicznej zmieniają swoją pozycję raz na godzinę. To jednak nie wszystko. Jeśli zwiększymy temperaturę o 10 stopni, zmiany zachodzą dwukrotnie częściej. Jeśli ją o 10 stopni zmniejszymy - dwukrotnie rzadziej - mówi Michael Leitner z zespołu badawczego. W przyszłości badania te posłużą np. do ulepszenia właściwości różnych metali tak, by lepiej kontrolować tworzące je atomy. Dzięki temu powstaną stopy, dzięki którym np. silniki samochodowe czy podzespoły komputerowe będą mogły pracować bardziej niezawodnie. Naukowcy mówią, że to dopiero początek tego typu badań, które nie będą się one ograniczały tylko do metali. W Hamburgu powstaje już European X-ray Free-Electron-Laser, który będzie oferował jeszcze większe możliwości niż Europejski Ośrodek Synchrotronu Atomowego. Dzięki niemu będzie można szczegółowo badać np. białka. Uczeni twierdzą, że epoka wykorzystywania "spójnych" promieni X do badań naukowych dopiero się rozpoczyna.
-
Naukowcy z Sandia National Laboratories posłużyli się swoją maszyną Z (akceleratorem symulującym wybuchy jądrowe), by w ciągu nanosekund otrzymać z wody lód i to w dodatku gorętszy od gotującej się wody. Aparatura badaczy generuje temperatury wyższe od panujących na Słońcu. Dzięki niej zbadano różne stany skupienia wody, a jest ich podobno dużo więcej niż dobrze nam znane ciało stałe, ciecz i gaz. Trzy stany skupienia wody, które znamy, zimny lód, ciecz temperatury pokojowej oraz gorąca para, w rzeczywistości są niewielkim ułamkiem opisanych postaci występowania tego związku — opowiada Daniel Dolan. Woda pod ciśnieniem ogrzewa się. Pod bardzo dużym ciśnieniem "gęstej" H2O łatwiej przejść w stały stan skupienia (lód) niż wkładać energię w podtrzymywanie stanu ciekłego (pozostawanie wodą). Normalnie lód ma większą objętość od wody, z której powstał (dlatego np. rozsadza butelki). W eksperymencie naukowców z Sandii objętość wody zmniejszyła się nagle, czyli w sposób nieciągły; w dodatku pojawiły się niemal wszystkie znane odmiany lodu, z wyjątkiem jego najbardziej pospolitej odmiany. Istnieje co najmniej 11 odmian lodu. Klasyfikuje się je w zależności od tego, jak zachowują się w określonych temperaturach i ciśnieniu. Naukowcy nie znają jednak nadal wszystkich ich specyfikacji. Jedną z odmian jest tzw. woda przechłodzona. Jest to woda ochłodzona do temperatury niższej niż punkt krzepnięcia, w której mimo to nie zachodzi krystalizacja. Zespół Dolana chciał sprawdzić, co dzieje się z różnymi materiałami w ekstremalnych warunkach. Zaskoczyło go m.in., jak szybko woda zamarza. Podczas błyskawicznej kompresji (ciśnienie ponad 70 tys. atmosfer generowano w ciągu ułamków sekundy) woda natychmiast zamarzała. Gdy ciśnienie zmniejszano, lód zaczynał się topić.
- 1 odpowiedź
-
- lód
- stany skupienia
-
(i 9 więcej)
Oznaczone tagami: