Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów 'chip' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 11 wyników

  1. Inżynierowie z Brown University zaprojektowali urządzenie, które pozwala mierzyć poziom glukozy w ślinie, a nie krwi. W artykule opublikowanym na łamach Nano Letter Amerykanie ujawnili, że w biochipie wykorzystano interferometry plazmoniczne. Zaprezentowane rozwiązanie powstało "na styku" dwóch dziedzin: nanotechnologii i plazmoniki, czyli nauki o własnościach i zastosowaniach powierzchniowych fal plazmonowo-polarytonowych. Na biochipie wielkości paznokcia specjaliści z Brown University wytrawili tysiące interferometrów plazmonicznych. Potem mierzyli stężenie glukozy w roztworze przepływającym po urządzeniu. Okazało się, że odpowiednio zaprojektowany biochip wykrywa stężenia glukozy występujące w ludzkiej ślinie. Zazwyczaj poziom cukru w ślinie jest ok. 100-krotnie niższy niż we krwi. W ten sposób zweryfikowaliśmy koncepcję, że [bazujące na interakcjach elektronów i fotonów] interferometry plazmoniczne można wykorzystać do wykrywania niewielkich stężeń cząsteczek - podkreśla prof. Domenico Pacifici, dodając, że równie dobrze jak glukoza, mogą to być inne substancje, np. zanieczyszczenia środowiskowe czy wąglik. W dodatku da się je wykrywać wszystkie naraz na tym samym chipie. Konstruując czujnik, naukowcy zrobili nacięcie o szerokości ok. 100 nanometrów. Potem z obu jego stron wycięli rowki o grubości 200 nanometrów. Wycięcie wychwytuje zbliżające się fotony, a rowki je rozpraszają, przez co dochodzi do interakcji z wolnymi elektronami, odbijającymi się od metalowej powierzchni chipa. Interakcje wolne elektrony-fotony prowadzą do powstania plazmonów powierzchniowych - tworzy się fala o długości mniejszej od fotonu w wolnej przestrzeni (free space). Dwie fale przemieszczają się wzdłuż powierzchni chipa, aż napotkają fotony w nacięciu. Zachodzi interferencja, a obecność mierzonej substancji (tutaj glukozy) na czujniku prowadzi do zmiany względnej różnicy faz, co z kolei powoduje mierzone w czasie rzeczywistym zmiany w intensywności światła transmitowanego przez środkowe wycięcie. Środkowe nacięcie działa jak mikser [...] dla fal plazmonów powierzchniowych i światła. Akademicy nauczyli się, że mogą manipulować przesunięciem fazy, zmieniając odległości między wycięciem a rowkami po bokach. W ten sposób można wykalibrować interferometr wykrywający bardzo niskie stężenia glukozy rzędu 0,36 mg na decylitr.
  2. System kontroli lotu ważek to interesująca kwestia, ale nie dało się jej badać przy użyciu dotychczasowego sprzętu telemetrycznego. Był na tyle ciężki, że owady nie zachowywały się w nim naturalnie. Zmieniło się to dzięki bezprzewodowemu chipowi, zasilanemu nie przez baterie, ale bezprzewodowo. Urządzenie jest wspólnym dziełem Matta Reynoldsa z Duke University i Reida Harrisona z Intan Technologies. Powstało dla naukowców z Howard Hughes Medical Institute (HHMI), którzy zbierają informacje, przymocowując elektrody do pojedynczych neuronów łańcuszka nerwowego. Istotnym elementem ich pracy jest zapisywanie aktywności elektrycznej komórek nerwowych i mięśni. Wcześniejsze systemy nagrywania aktywności neuronalnej wymagały dużych baterii. Ważki nie mogły ich unieść, dlatego badano unieruchomione owady, które obserwowały obraz z projektora. Akademicy wiążą z nowym urządzeniem spore nadzieje, bo jeśli wszystko pójdzie po ich myśli, za jego pomocą będzie można badać nie tylko ważki, ale i inne małe zwierzęta. Wyeliminowanie baterii to szansa na "odchudzenie" aparatury i jej zminiaturyzowanie. Testy systemu prowadzono na specjalnej arenie. To tutaj umieszczano zasilający chip nadajnik. Ustalono, że chip przesyła dane w czasie rzeczywistym z prędkością do 5 megabitów na sekundę. Biolodzy zamierzają zestawiać dane pozyskiwane z neuronów z nagraniami szybkoklatkowymi ważek polujących na muszki owocowe. Szacują, że rozpoczną eksperymenty w ciągu najbliższych miesięcy. Chip z 2 antenkami ma być mocowany do spodniej części odwłoka, nie będzie więc przeszkadzać w poruszaniu skrzydłami. Średnia waga badanych ważek wynosi ok. 400 miligramów. Anthony Leonardo z HHMI ocenia, że bez szkody dla lotu i polowania owad jest w stanie unieść mniej więcej jedną trzecią swojej wagi, tymczasem dzisiejsze wielokanałowe systemy telemetryczne ważą 75-150 razy więcej niż ważka (bez baterii). Wcześniej Harrison i Leonardo opracowali co prawda zasilany baterią system specjalnie dla owadów, ale ponieważ ważył 130 miligramów, ważki musiały się wysilić, żeby go unieść. Na takim tle chip o wadze zaledwie 38 miligramów wydaje się lekki jak piórko. Co ważne, ma on 15 razy większą szerokość pasma niż urządzenie poprzedniej generacji.
  3. Gdy profesor neurobiologii Dean Buonomano z Uniwersytetu Kalifornijskiego w Los Angeles (UCLA) zapoznał się z układem scalonym symulującym pracę synaps ludzkiego mózgu stwierdził, że reprezentowany przez chip poziom biologicznego realizmu jest zadziwiający. Naukowcy od dziesięcioleci próbują stworzyć układ scalony, który mógłby symulować ludzki mózg. Uczeni z MIT (Massachusetts Institute of Technology) dokonali olbrzymiego kroku naprzód. Zbudowali chip wykorzystujący około 400 tranzystorów, które symulują pracę pojedynczej synapsy. Każda z synaps w mózgu łączy ze sobą dwa neurony. Nasze mózgi posiadają około 100 miliardów neuronów, a każdy z nich tworzy liczne synapsy łączące go z wieloma innymi neuronami. Naturalna aktywność synaps jest zależna od kanałów jonowych, które kontrolują przepływ jonów sodu, potasu czy wapnia. Kanały te odgrywają również kluczową rolę w procesach długotrwałego wzmocnienia synaptycznego (LPT) oraz długotrwałego osłabienia synaptycznego (LTD). To pierwsze zachodzi pod wpływem krótkiego bodźca o wysokiej częstotliwości, natomiast LTD to wynik długotrwałego pobudzania niską częstotliwością. LPT i LTD są też związane, odpowiednio, z bardziej i mniej sprawnym transportem jonów. Naukowcy z MIT-u tak zaprojektowali swój układ, by tranzystory naśladowały zachowanie kanałów jonowych. Działanie poszczególnych tranzystorów jest uzależnione od potencjału płynącego prądu, tak, jak działanie kanałów jest zależne od częstotliwości sygnału. Możemy teraz naśladować każdy proces jonowy, który ma miejsce w neuronie - mówi Chi-Sang Poon, główny badacz z Harvard-MIT Division of Health Sciences and Technology. Już wcześniej symulowano pracę synaps, jednak nie były to symulacje oddające różnice w potencjałach. Jeśli naprawdę chcesz symulować funkcje mózgu, nie możesz ograniczyć się tylko do wysyłania sygnałów. Musisz naśladować cały proces międzykomórkowy, który opiera się na kanałach jonowych - dodaje Poon. Naukowcy z MIT-u chcą wykorzystać swój układ do symulowania konkretnych funkcji neuronów, jak np. sposobu przetwarzania obrazów. Obecnie symulacja prostych połączeń w mózgu zajmuje wydajnym komputerom całe godziny lub dni. Nowy analogowy chip będzie w stanie przetwarzać odpowiednie sygnały nawet szybciej niż prawdziwy system biologiczny. Niewykluczone też, że w przyszłości podobne układy scalone pozwolą np. na komunikację pomiędzy mózgiem a protezami, a w jeszcze bardziej odległej perspektywie staną się podstawą do stworzenia sztucznej inteligencji.
  4. Sztuczny móżdżek u szczurów to, wg futurystów, kolejny krok na drodze do stworzenia cyborgów, u których wzmocniono by działające prawidłowo funkcje. Dla biologów i lekarzy osiągnięcie Mattiego Mintza z Uniwersytetu w Tel Awiwie ma jednak nieco inne znaczenie: daje nadzieję na zastąpienie struktur uszkodzonych przez udar, wypadek czy procesy starzenia. Naukowcy podkreślają, że dotychczasowe protezy, np. implant ślimakowy, pozwalały na jednokierunkową komunikację – od urządzenia do mózgu albo na odwrót. W przypadku sztucznego móżdżku przepływ informacji zachodzi w obie strony. Urządzenie otrzymuje dane czuciowe z pnia mózgu. Interpretuje je, a następnie wysyła sygnał do różnych regionów pnia mózgu i znajdujących się tu obwodowych neuronów ruchowych (to do nich dostarczają część bodźców włókna związane z odruchami i programem ruchów). To dowód, że można nagrywać dane z mózgu, analizować je podobnie jak sieć biologiczna i kierować do mózgu informację zwrotną – cieszy się Mintz. Z kilku względów móżdżek doskonale nadawał się do zastąpienia sztucznym odpowiednikiem. Niemal doskonale znamy jego anatomię i niektóre z jego zachowań. Na początku akademicy analizowali sygnały napływające z pnia mózgu do sterującego równowagą, koordynacją i czasowaniem ruchów móżdżku. Później przyglądali się generowanej przez móżdżek odpowiedzi. Na końcu stworzyli sztuczną wersję móżdżku w postaci chipa, który znajduje się na zewnątrz czaszki i jest podłączony do mózgu za pomocą wszczepionych elektrod. W ramach testów znieczulono szczura i wyłączono jego móżdżek. Zwierzę poddano warunkowaniu klasycznemu. Najpierw miało ono mrugać w odpowiedzi na dmuchnięcie w oko połączone z dźwiękiem, potem po zadziałaniu samego dźwięku. W pierwszym scenariuszu naukę prowadzono bez podłączonego chipa (wtedy szczur nie był w stanie opanować odruchu). W drugim chip podłączano i gryzoń uczył się jak zwykłe zwierzę. Naukowcy komentujący doniesienia Izraelczyków podkreślają, że w przyszłości trzeba będzie stworzyć modele większych obszarów móżdżku, które mogłyby się uczyć całych sekwencji ruchowych. Wg nich, warto by też sprawdzić, jak sprawuje się chip u przytomnych zwierząt, a nie będzie to łatwe ze względu na artefakty w sygnale generowane przez sam ruch.
  5. Naukowcy odtworzyli oleistą powłokę nanotuneli czułków samca jedwabnika. Wykorzystali ją w syntetycznych nanoporach, czyli otworach wytworzonych w krzemowych chipach, które stosuje się do badania pojedynczych cząsteczek. Osiągnięcie to pozwoli taniej sekwencjonować DNA lub analizować budowę białek, np. wywołujących chorobę Alzheimera. Pracami zespołu, którego artykuł ukazał się właśnie na łamach Nature Nanotechnology, kierował prof. Michael Mayer z Univeristy of Michigan. Inżynierowie podkreślają, że oleista powłoka umożliwia wyłapywanie i transportowanie żądanych cząsteczek przez nanopory (wcześniej łatwo się one zatykały). Co więcej, smar pozwala dostosowywać rozmiary otworów z niemal atomową precyzją. Zyskujemy ulepszone narzędzie do charakteryzowania biocząsteczek. Pozwala ono gromadzić informacje na temat ich rozmiarów, ładunku, kształtu, stężenia i prędkości, z jaką się organizują. To może nam pomóc w zdiagnozowaniu i ustaleniu, co idzie nie tak w chorobach neurodegeneracyjnych, w tym parkinsonizmie, alzheimeryzmie i pląsawicy Huntingtona. Dwuwarstwa lipidowa Amerykanów przypomina wyściółkę czułków samców jedwabników. Dzięki niej wyłapują one cząsteczki feromonów samic i transportują je przez nanotunele w szkielecie zewnętrznym aż do neuronów, które wysyłają sygnał do mózgu. Te feromony są lipofilowe. [...] Ulegają więc przechwyceniu i skoncentrowaniu na powierzchni warstwy lipidowej jedwabnika. Na zasadzie poślizgu feromony są przemieszczane do miejsca, gdzie powinny się znaleźć. Nasza nowa powłoka służy do tego samego celu. Mayerowi szczególnie zależy na badaniu beta-amyloidu. Tworzy on blaszki, które doprowadzają do obumierania neuronów w przebiegu choroby Alzheimera. Naukowiec zamierza przyjrzeć się ich kształtom, rozmiarom i sposobom formowania. Istniejące techniki nie pozwalają dobrze monitorować tego procesu. Podczas eksperymentów naukowcy umieszczają chip z nanoporami pomiędzy dwiema komorami z roztworem soli. Wkrapiają interesujące ich cząsteczki do jednej z nich i przez otwór przepuszczają prąd. Gdy każde białko lub cząsteczka przez niego przejdą, zmienia się rezystancja (oporność). Zakres zaobserwowanych zmian daje pogląd na kształt, wielkość i ładunek elektryczny analizowanych cząstek.
  6. Inżynierowie skonstruowali stymulator mięśni, który jest na tyle mały, że można go wszczepić do kanału kręgowego. Ma on pomóc paraplegikom (osobom z porażeniem dwukończynowym) w wykonywaniu ćwiczeń wzmacniających mięśnie nóg. Implant przypomina rozmiarami dziecięcy paznokieć. W pojedynczym module zmieściły się zarówno elektrody, jak o stymulator. Projektem EPSRC (Engineering and Physical Sciences Research Council) kieruje prof. Andreas Demosthenous z Uniwersyteckiego College'u Londyńskiego. Współpracują z nim eksperci z Uniwersytetu we Fryburgu Bryzgowijskim oraz Tyndall Institute. Demosthenous tłumaczy, że za pomocą urządzenia jego autorstwa da się pobudzać więcej grup mięśniowych niż przy wykorzystaniu tradycyjnych technologii, ponieważ w kanale kręgowym można umieścić kilka modułów. Stymulacja większej liczby grup mięśniowych oznacza, że użytkownik aparatu będzie w stanie na tyle się poruszać, by wykonywać kontrolowane ćwiczenia, takie jak jazda na rowerze czy wiosłowanie. Międzynarodowy zespół podkreśla, że urządzenie sprawdzi się też podczas rehabilitacji nietrzymania moczu czy kału – w takich przypadkach stymulowano by ściany pęcherza lub nerwy (prowadząc do zwiększenia pojemności jelita grubego i zahamowując jego skurcze). Dzięki najnowszej technologii laserowej z platynowej folii wycięto miniaturowe elektrody. Potem je złożono, nadając im kształt kartek książki (stąd nazwa aparatu Aktywna Książka, Active Book). Kartki zamykają się wokół korzeni nerwów, są też zespawane z krzemowym chipem. Projektanci zadbali o hermetyczne zamknięcie całości, by do środka nie dostała się woda i nie doszło do korozji elektroniki. Wbudowano nawet czujnik wilgoci. Pilotażowe badania z Active Book rozpoczną się najprawdopodobniej w przyszłym roku.
  7. Chris Dwyer, profesor z Duke University uważa, że w przyszłości magistrant w uniwersyteckim laboratorium będzie w stanie w ciągu jednego dnia wyprodukować więcej układów scalonych niż obecnie wynosi światowa miesięczne produkcja krzemowych chipów. Ma to być możliwe dzięki zastosowaniu DNA do wytwarzania układów. Podczas swoich najnowszych eksperymentów Dwyer wykazał, że mieszając odpowiednio przygotowane fragmenty DNA z innymi molekułami można stworzyć miliardy niewielkich, identycznych struktur przypominających wyglądem gofry. Ze struktur tych można następnie budować urządzenia. Gdy potraktujemy chromofory światłem, zaabsorbują je wzbudzając elektrony. Uwolniona energia przechodzi do innego typu chromoforu położonego obok, który ją absorbuje i emituje światło o innej długości fali. Światło wejściowe różni się zatem od światła wyjściowego, a różnica ta może być z łatwością wykryta - mówi uczony. W ten sposób możemy uzyskać odpowiednik elektronicznych zer i jedynek. W DNA zamiast ładunku elektrycznego można użyć światła, by otrzymać taki sam efekt, a całość działa znacznie szybciej. Zdaniem profesora Dwyera możliwość szybkiego i taniego produkowania olbrzymiej liczby obwodów jest logicznym krokiem w dalszym rozwoju technologii. Fragmenty DNA można w łatwy i tani sposób przystosowywać do własnych celów, a uczony wykorzystał naturalną tendencję kwasu dezoksyrybonukleinowego do przyczepiania się w odpowiednie miejsca innych fragmentów. To jak wrzucenie puzzli do pudełka i wstrząsanie nim, co pozwala puzzlom samodzielnie odnaleźć właściwe sobie miejsce. My wzięliśmy miliardy puzzli, umieściliśmy je w jednym miejscu i uzyskaliśmy miliardy kopii jednego puzzla - powiedział uczony. Podczas eksperymentów stworzono "puzzla" z 16 części z chromoforami ulokowanymi na krawędziach "puzzla". Możliwe jest oczywiście tworzenie fragmentów z większej liczby części. Dwyer zauważa, że DNA można będzie używać nie tylko do tworzenia układów obliczeniowych. Jego technika sprawdzi się też np. w biomedycynie, gdyż nanostruktury są czujnikami, a zatem możliwe jest tworzenie z nich np. bloków odpowiedzialnych za wykrywanie konkretnych białek, towarzyszących konkretnym chorobom.
  8. Naukowcy opracowali chip usuwający ból pleców, który stymuluje rdzeń nerwowy dzięki zasilaniu z telefonu komórkowego. Jak tłumaczy Lin Chi-wan, bioinżynier z Narodowego Uniwersytetu Tajwańskiego, dotąd pacjentowi wszczepiano zarówno chip, jak i nieporęczne baterie. Zakończyliśmy testy nowego urządzenia na zwierzętach. Uzyskaliśmy dobre rezultaty. By potwierdzić jego skuteczność, wkrótce planujemy badania z udziałem ludzi. Chip wielkości monety to rezultat 6 lat badań. Wyposażono go w dwie elektrody, które przekazują fale elektromagnetyczne mające usunąć ból.
  9. Jakiś czas temu uzyskano owady z wbudowanymi chipami, które stymulowały nerwy bądź konkretne neurony, kierując zwierzę w wybranym przez człowieka kierunku. Takie cyborgi miały uczestniczyć w misjach szpiegowskich oraz za pomocą czułych zmysłów wykrywać szkodliwe dla naszego gatunku związki chemiczne i materiały wybuchowe. Pojawił się jednak problem zasilania wszczepionego urządzenia. Kable ograniczały pole działania, baterie o długiej żywotności były za ciężkie, a lżejsze wyczerpywały się już po kilku minutach. Przeszkodę pokonano dzięki wykorzystaniu energii ruchów insektów. Keisuke Morishima z Tokyo University of Agriculture and Technology przykleił do grzbietu karaczana madagaskarskiego (Gromphadorhina portentosa) włókno piezoelektryczne o długości 4 cm i średnicy 200 mikrometrów. Stawianie kolejnych kroków powodowało rozciąganie i kurczenie się kabelka, a napięcia mechaniczne generowały prąd. W ramach eksperymentów Japończyk wykazał, że w ten prosty sposób z pojedynczego włóka da się uzyskać napięcie rzędu 10 miliwoltów. By zasilić zaimplementowane urządzenie, należałoby wyposażyć karalucha w 100 przewodzików. Inni cybernetycy mają jednak kilka zastrzeżeń do rozwiązań zaproponowanych przez naukowca z Kraju Kwitnącej Wiśni. Utrzymują, że Morishima nie przemyślał, jak magazynować energię, by wystarczyło jej na całą misję. Wg nich, setka włókien to za dużo jak na barki owada, ale szczur spokojnie poradziłby sobie z takim ciężarem.
  10. Podczas Memristor and Memristor System Symposium, które odbyło się w Berkeley, zademonstrowano pierwszy w historii układ będący połączeniem memrystorów z tranzystorami. Memrystor, po raz pierwszy pokazany w maju bieżącego roku, to czwarty typ podstawowego obwodu elektrycznego. Pokazany właśnie przez HP chip dowodzi, że układ stworzony z tranzystorów i memrystorów działa tak, jak kość złożona z dużej liczby samych tranzystorów. Tak więc wykorzystanie memrystorów pozwala na stworzenie znacznie mniejszych i zużywających mniej energii kości, które wydajnością nie ustępują tradycyjnym układom tranzystorowym. Memrystory pozwolą więc przez kolejne lata zachować ważność Prawu Moore'a. Stan Williams, jeden z twórców memrystora, mówi, że jego zintegrowanie z tranzystorami było znacznie łatwiejsze, niż przypuszczano. Ponieważ memrystory buduje się z tych samych materiałów, które wykorzystuje się obecnie w układach scalonych, okazało się, że zintegrowanie ich z tranzystorami jest bardzo łatwe. Memrystory działają jak oporniki, ale w przeciwieństwie do nich potrafią zmieniać oporność w zależności od ilości i kierunku przyłożonego napięcia. Ponadto zapamiętują oporność po odłączeniu zasilania. Dzięki temu pojedynczy memrystor może spełniać rolę wielu tranzystorów. Jest też obiecującą, szybszą, tańszą, mniejszą i bardziej energooszczędną alternatywą dla pamięci flash. Specjaliści mają nadzieję, że memrystor zrewolucjonizuje też budowę układów FPGA (Field Programmable Gate Array). To programowalne układy scalone, które można na bieżąco przystosowywać do zadań, które mają wykonywać. FPGA są obecnie używane przede wszystkim do projektowania innych kości, pozwalają bowiem producentowi przetestować architekturę kości. Są jednak drogie w produkcji, duże i wolno pracują, dlatego też nie są zbyt rozpowszechnione. Dzięki memrystorom być może uda się wyprodukować FPGA pozbawione jego wad, a zachowujące zalety. Przez najbliższe lata naukowcy będą badali i udoskonalali memrystory. Wiliams uważa, że pierwsze układy scalone z memrystorami trafią do sprzedaży w ciągu trzech lat.
  11. Zaginione psy znajdują się dużo częściej niż koty. Dzieje się tak, ponieważ najlepsi przyjaciele człowieka z większym prawdopodobieństwem mają wszczepione chipy, a ich właściciele szybciej spieszą swoim czworonogom na pomoc. Zgodnie z wynikami badań, do ponownego spotkania z właścicielami dochodzi w przypadku 71 proc. zgubionych psów (analizowano dane z miejscowości Dayton w Ohio) i tylko 53% kotów. Linda Lord z Uniwersytetu Stanowego Ohio przeprowadzała wywiady z osobami, które zamieściły ogłoszenia o zaginięciu zwierzęcia w lokalnej gazecie. Odkryła, że właściciele psów kontaktowali się i odwiedzali schroniska szybciej niż posiadacze mruczących pupili. Ponad połowę psów odnajdowano w miejscowych przytułkach. Dwie trzecie kotów samodzielnie wracały do domów (Journal of the American Veterinary Medical Association). Koty rzadziej mają chipy czy tatuaże, ponieważ albo zakłada im się obroże, albo nigdy nie wychodzą z domu. To, że kot siedzi w domu, nie znaczy, iż nie trzeba go będzie kiedyś zidentyfikować, przecież zawsze może się wymknąć przez lekko uchylone drzwi czy wyskoczyć przez okno. Jeśli ludzie znajdują kota bez identyfikatora, myślą, że jest bezpański. Przygarniają go i zaczynają karmić. W przypadku psa nie przychodzi im to raczej do głowy. Pies przeważnie jest czyjś. Oto wskazówki dla osób poszukujących zaginionego zwierzaka:Kluczem do odnalezienia jest widoczne oznakowanie. Ktoś, kto znajdzie czworonoga, może zadzwonić pod numer podany na plakietce, bez konieczności kontaktowania się ze schroniskiem lub weterynarzem. Mikrochipy są świetnym wynalazkiem, ale nie są widoczne bez uprzedniego przeskanowania.Ważne, by działać szybko: zadzwonić do schroniska po jednym dniu od zaginięcia, wpadać tam co trzeci dzień, rozwiesić plakaty ze zdjęciem albo zamieścić ogłoszenie w gazecie. Wielu badanych przez Lord ludzi było zaskoczonych sposobami, na jakie można szukać pupila.Plan poszukiwań to nie luksus, lecz konieczność. Chaotyczne działania nie prowadzą donikąd.
×
×
  • Dodaj nową pozycję...