Znajdź zawartość
Wyświetlanie wyników dla tagów 'antyproton' .
Znaleziono 3 wyniki
-
Satelita odkrył antyprotony uwięzione przez pole magnetyczne Ziemi. To kolejne, po pozytronach, cząsteczki antymaterii otaczające naszą planetę. Naładowane cząsteczki bez przerwy penetrują atmosferę, zderzając się z obecnymi tam cząsteczkami. W wyniku kolizji powstają nowe cząsteczki, z których wiele uwięzionych jest w pasach Van Allena. Pasy te to dwa półkoliste obszary naładowanych cząsteczek, otaczające Ziemię. Składają się one głównie z elektronów i protonów. Już wcześniej odkryto tam też pozytrony, czyli odpowiedniki elektronów z antymaterii. Teraz narzędzie PAMELA, znajdujące się na pokładzie rosyjskiego satelity, trafiło na ślad antyprotonów, które są niemal 2000 razy cięższa od pozytronów. O odkryciu poinformował Piergiorgio Picozza z Uniwersytetu Roma Tor Vergata. Pomiędzy lipcem 2006 a grudniem 2008 PAMELA odkryła 28 antyprotonów uwięzionych w polu magnetycznym Ziemi nad biegunem południowym. Jako, że PAMELA bada jedynie niewielki fragment pola, można przypuszczać, że antyprotonów są miliardy. To interesujące, że pole magnetyczne Ziemi działa podobnie do pułapek magnetycznych, które wykorzystujemy w laboratorium - mówi Rolf Landua z CERN-u. Alessandro Bruno z Uniwersytetu w Bari uważa, że antymateria uwięziona przez pole magnetyczne Ziemi może pewnego dnia posłużyć jako paliwo dla pojazdów kosmicznych. Podczas interakcji pomiędzy materią a antymaterią dochodzi do produkcji energii, a proces ten jest bardziej efektywny niż fuzja zachodząca we wnętrzu Słońca. To najbardziej obfite źródło antyprotonów w pobliżu Ziemi. Kto wie, może pewnego dnia pojazd kosmiczny wystrzelony z Ziemi zostanie zatankowany w tym obszarze protonami i uda się w dalszą podróż - mówi Bruno.
-
- pole magnetyczne
- Ziemia
-
(i 2 więcej)
Oznaczone tagami:
-
Model antymaterii, w tym jej anihilacji ze „zwykłą" materią wydawał się prosty i zrozumiały, przecież samą antymaterię wytwarza się już rutynowo. Tak było do czasu eksperymentów, jakie w genewskim CERNie przeprowadził międzynarodowy zespół uczonych z Danii, Węgier, Wielkiej Brytanii i Japonii bombardując cząsteczkowy wodór wolnymi antyprotonami. Odmienność doświadczenia polegała na bombardowaniu nie pojedynczych atomów, lecz cząsteczek, na początek wybrano najprostsze: wodór, a dokładniej gazowy deuter (ciężki izotop wodoru z neutronem w jądrze). Za pociski posłużyły antyprotony, które spowolniono do jednej setnej prędkości światła. Ujemnie naładowane antyprotony nie przyciągają również posiadających ujemny ładunek elektronów, a niewielka prędkość pozwala na pominięcie skomplikowanych poprawek relatywistycznych. Eksperyment, którym kierował Japończyk z instytutu RIKEN, Yasunori Yamazaki, wykazał, że prawdopodobieństwo jonizacji cząsteczek deuteru zależy liniowo od prędkości antyprotonów, co stoi w sprzeczności z oczekiwaniami i dotychczasowym modelem dla atomowego wodoru. Nie jest znany mechanizm tego zachowania. Poszukując teoretycznego wyjaśnienia członkowie zespołu spekulują, że cząsteczkowy cel posiada mechanizm hamujący jonizację - podczas zbliżania się antyprotonu do protonu w jednym jądrze cząsteczki obecność protonu w drugim jądrze powoduje przemieszczenie orbitującej chmury elektronów. Im wolniejszy antyproton, tym więcej czasu pozostaje cząsteczce na dopasowanie się, stąd mniejsze prawdopodobieństwo jonizacji. To wielka niespodzianka, to zmienia nasze rozumienie dynamiki kolizji atomowych, która okazuje się, nawet na poziomie jakościowym, jeszcze w powijakach - mówi Yamazaki. Najbliższe eksperymenty mają sprawdzić, czy prawdopodobieństwo jonizacji zależy od odległości od celu oraz położenia w momencie kolizji.
- 6 odpowiedzi
-
- Yasunori Yamazaki
- CERN
-
(i 6 więcej)
Oznaczone tagami:
-
Fizycy z CERN-u schłodzili antymaterię do najniższej osiągniętej dotychczas temperatury. Zespół naukowców obniżył temperaturę antyprotonów do 9,26 kelwina, jest ona zatem niższa niż temperatura Plutona. Badania pomogą wyjaśnić, dlaczego wszechświat zbudowany jest z materii, a nie antymaterii. Aby zbadać to zjawisko uczeni będą musieli połączyć antyprotony z pozytronami, uzyskując w ten sposób antywodór. Dzięki utrzymywaniu schłodzonego antywodoru w pułapkach magnetycznych będą mogli studiować zachowanie antymaterii. Jak zauważył Jeff Hangst, rzecznik prasowy zespołu badającego antymaterię w niskich temperaturach, wodór jest jednym z najczęściej badanych systemów fizycznych. Uczeni z CERN-u chcieliby z taką samą uwagą zbadać antywodór. Poprzedni rekord schłodzenia antymaterii należał do zespołu z Uniwersytetu Harvarda, który w 1989 roku obniżył temperaturę antyprotonów do 104,3 kelwina.
- 6 odpowiedzi