Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów 'antyhiperwodór-4' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 1 wynik

  1. Członkowie międzynarodowego zespołu badawczego STAR Collaboration, jednego z czterech projektów prowadzonych w Relatywistycznym Zderzaczu Ciężkich Jonów (RHIC) w Brookhaven National Laboratory – w którym odtwarzane są warunki, jakie panowały we wczesnym wszechświecie – ogłosili odkrycie najcięższego jądra antymaterii. Składa się ono z antyprotonu, dwóch antyneutronów oraz antyhiperonu i zostało nazwane antyhiperwodorem-4. Odkrycia dokonano analizując wyniki 6 miliardów zderzeń jąder atomowych. Antymateria ma, z wyjątkiem przeciwnego ładunku elektrycznego, te same właściwości co materia: tę samą masę, taki sam czas życia przed rozpadem, wchodzi w takie same interakcje, wyjaśnia Junlin Wu, świeżo upieczony magister ze Wspólnego Wydziału Fizyki Jądrowej Uniwersytetu w Lanzhou i Instytutu Współczesnej Fizyki Chińskiej Akademii Nauk. Wciąż za to nie wiemy, i jest to jedna z najważniejszych zagadek współczesnej fizyki, dlaczego wszechświat zbudowany jest głównie z materii, a nie antymaterii i dzieje się tak mimo tego, że podczas Wielkiego Wybuchu powstało tyle samo antymaterii co materii. RHIC to idealne miejsce do prób szukania odpowiedzi na to pytanie. To pierwszy i jeden z zaledwie dwóch – drugim jest Wielki Zderzacz Hadronów (LHC) – akcelerator, w którym zderzane są ciężkie jony. W urządzeniu zderzane są ciężkie jony pędzące z prędkością bliską prędkości światła. Po zderzeniu powstaje mieszanina kwarków i gluonów, w której biorą początek nowe cząstki. I tak, jak we wczesnych wszechświecie, cząstki materii i antymaterii rodzą się tam w niemal równych proporcjach. Badacze mają nadzieję, że badając te cząstki znajdą przyczynę, dla której symetria została zachwiana na rzecz wszechświata zbudowanego z materii. U podstaw naszych eksperymentów leży proste przypuszczenie, że jeśli chcemy poznać przyczynę asymetrii materii i antymaterii, to musimy najpierw odkryć nowe cząstki antymaterii, mówi fizyk Hao Qiu, doradca naukowy Junlina Wu. Naukowcy ze STAR Collaboration już wcześniej znajdowali antymaterię w danych ze zderzeń w RHIC. W 2010 roku odkryli antyhipertryt, pierwsze jądro antymaterii zawierającą hiperon. Hiperony to cząstki, które zawierają co najmniej jeden kwark dziwny, ale nie zawierające kwarka górnego i dolnego. Wchodzą one w skład hiperjąder. Pierwsze hiperjądro odkryli w 1952 roku Marian Danysz i Jerzy Pniewski z Uniwersytetu Warszawskiego. Odkrycie antyhiperwodoru-4 oznacza nie tylko znalezienie najcięższego jądra antymaterii, ale również trafienie na igłę w stogu siana. Hiperjądra żyją bowiem tak długo, jak istnieje hiperon, a czas jego życia nie przekracza 10-10 sekundy. Ponadto, by powstał antyhiperwodór-4, z zupy kwarkowo-gluonowej powstałej po zderzeniu ciężkich jąder w RHIC muszą wyłonić się wszystkie cztery składowe nowego jądra, muszą one powstać w odpowiednim miejscu, przemieszczać się w tym samym kierunku, by w odpowiednim czasie się połączyć i na krótko utworzyć antyhiperwodór-4. Zidentyfikowanie nowej cząstki antymaterii było możliwe dzięki zidentyfikowaniu cząstek, na które się ona rozpadła. Jednym z produktów rozpadu był antyhel-4, drugim jest pion o ładunku dodatnim. Jako że już wcześniej odkryliśmy antyhel-4, użyliśmy tej samej metody do jego zidentyfikowania, a następnie dokonaliśmy rekonstrukcji cząstki macierzystej, wykorzystując w tym celu π+, wyjaśnia Wu. Rekonstrukcja taka polega na śledzeniu wstecz trasy przemieszczania się antyhelu-4 i π+, co pozwala stwierdzić, czy obie cząstki pojawiły się w tym samym punkcie. Nie było to łatwe zadanie. Naukowcy musieli przeanalizować miliardy zderzeń. Każdy zauważony antyhel-4 mógł mieć coś wspólnego nawet z 1000 pionów. Trzeba było więc sprawdzić każdą z możliwości. Kluczem do sukcesu było znalezienie takiej pary antyhel-4-π+, której trajektoria rozpoczynała się w tym samym punkcie. Znaleziono 22 takie pary, a analiza wykazała, że sześć takich wydarzeń to szum tła. Tym samym uczeni ze STAR Collaboration mogli poinformować o wykryciu 16 jąder antyhiperwodoru-4. Naukowcy porównali czas życia antyhiperwodoru-4 z hiperwodorem-4 oraz antyhipertrytu i hipertrytu. Nie znaleźli żadnych zasadniczych różnic. Ich badania potwierdziły istnienie symetrii, a zatem prawdziwość obecnych modeli fizycznych. Obecnie pracują nad porównaniem masy wspomnianych cząstek i antycząstek. « powrót do artykułu
×
×
  • Dodaj nową pozycję...