Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów 'antena' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 8 wyników

  1. Po 8-miesięcznym milczeniu NASA ponownie skontaktowała się ze znajdującą się na krawędziach Układu Słonecznego sondą Voyager 2. Brak kontaktu spowodowały był remontem i rozbudową anteny, która służy do komunikacji z Voyagerem. Prace na 70-metrowej antenie trwały od połowy marca. W końcu 29 października wysłano serię komend, a Voyager 2 potwierdził ich otrzymanie i wykonał je bez najmniejszego problemu. Komendy były testem Deep Space Station 43, jedynej anteny, która służy do komunikacji z Voyagerem 2. Urządzenie znajduje się w Australii i jest częścią Deep Space Network. To należąca do NASA sieć anten do komunikacji radiowej z pojazdami znajdującymi się poza orbitą Księżyca. Po wyłączeniu Deep Space Station 43 operatorzy Voyager 2 mogli jedynie otrzymywać od niego dane naukowe oraz informacje dotyczące stanu pojazdu. Nie byli jednak w stanie wysłać żadnej komendy. W ramach rozbudowy DSS43 została wyposażona w dwa nowe nadajniki. Jeden z nich, ten używany do wysyłania komend, zastąpił stary nadajnik sprzed 47 lat. Wymieniono też podzespoły ogrzewające i chłodzące, elementy związane z dostarczaniem energii i wiele innych części anteny. Udany test komunikacji z 29 października daje nadzieję, że zgodnie z planem DSS43 powróci do normalnej pracy w lutym przyszłego roku. Deep Space Network składa się z anten znajdujących się w Australii (Canberra), USA (Goldstone w Kalifornii) i Hiszpanii (Madryt). Takie ich rozmieszczenie gwarantuje, że niemal każdy pojazd, który znajduje się w prostej linii od Ziemi, ma przez cały czas łączność przynajmniej z jedną anteną. Voyager 2 jest tutaj rzadkim wyjąkiem. Aby dokonać przelotu w pobliżu Trytona, księżyca Neptuna, sonda musiała przelecieć nad biegunem północnym planety. Taka trajektoria spowodowała, że przesunęła się na południe względem płaszczyzny orbity planet i cały czas zmierza w tym kierunku. To wciąż pogłębiające się odchylenie na południe powoduje, że Voyager 2 nie jest już widoczny dla anten z Półkuli Północnej. Kontakt z nim ma zatem wyłącznie antena z Australii. DSS43 to jedyna antena na Półkuli Południowej, która ma wystarczająco dużą moc, by wysyłać komendy do Voyagera 2. Jego bliźniak, Voyager 1, obrał inną drogę za Saturnem, jest więc widoczny dla obu anten z Półkuli Północnej. W czasie, gdy DSS43 nie mogła wysyłać komend do Voyagera 2, informacje nadchodzące z tej sondy były odbierane przez trzy 34-metrowe anteny w Canberze. DSS43 rozpoczęła pracę w 1972 roku, na 5 lat przed wystrzeleniem Voyagerów. Wówczas miała średnicę 64 metrów. W roku 1987 zwiększono ją do 70 metrów. Od tamtego czasu urządzenie było wielokrotnie rozbudowywane i naprawiane. Jednak obecna praca były najbardziej znaczącymi i wiązały się z najdłuższym wyłączeniem anteny od ponad 30 lat. DSS43 to wysoce wyspecjalizowany system. Na całym świecie są tylko dwie podobne anteny, więc wyłączenie jednej z nich to nie jest najlepsza sytuacja dla Voyagera i wielu innych misji NASA. Jednak musimy podejmować takie decyzje, by móc obsługiwać obecne i przyszłe misje. W przypadku urządzenia, które liczy sobie niemal 50 lat, trzeba być proaktywnym. Nie można czekać, aż coś się zepsuje, mówi Philip Baldwin z NASA. Z Deep Space Network korzystają liczne misje. Najnowsza rozbudowa przyda się m.in. podczas obecnych i planowanych misji na Marsa. « powrót do artykułu
  2. Pysk ryb pił jest wyciągnięty w tzw. rostrum. Okazuje się, że to broń typu wszystko w jednym, bo nie tylko pozwala wyczuć ofiarę, ale i po zamachach wykonywanych na boki z imponującą prędkością zmienia się w widelec - kąsek nabija się bowiem na zęby. Wcześniej biolodzy wiedzieli, że ryby piły reagują na pole elektryczne ofiar. Na rostrum znajdują się tysiące elektroreceptorów, dodatkowo kanaliki w pokrywającej je skórze pozwalają wykryć ruch wody. Teraz australijsko-amerykańskiemu zespołowi udało się sfilmować te krytycznie zagrożone wyginięciem zwierzęta w akcji, co rozwiało wątpliwości dotyczące szczegółów działania piły. Barbara Wueringer z University of Queensland podkreśla, że była bardzo zaskoczona, widząc biegłość, z jaką ryby piły posługują się swoim "oprzyrządowaniem". Wystarczy powiedzieć, że poruszają rostrum z prędkością kilku wymachów na sekundę. Osobnikom sfilmowanym dzięki ukrytym kamerom podawano kawałki tuńczyków i kiełbi. Pchnięcia były niekiedy wystarczająco silne, by przepołowić rybne bloki. Wyszło też na jaw, że rostrum świetnie się nadaje do przyszpilania upolowanych kąsków do dna. W ramach najnowszego studium akademicy obserwowali, jak niedawno schwytane piły słodkowodne (Pristis microdon) nabijały "ofiarę", reagując na słabe pole elektryczne wody i dna, które miało przypominać to charakterystyczne dla żywych zwierząt. Fakt, że ryby piły poruszają się w kolumnie wody, by ściągnąć stamtąd ofiary, świadczy, że są bardziej aktywnymi myśliwymi niż dotąd sądzono. Kiedyś rostrum postrzegano jako pogrzebacz do przekopywania osadów dennych. Teraz okazało się, że mamy raczej do czynienia z, jak to ujmuje Wueringer, anteną połączoną z bronią. Rostra występujące u innych ryb spełniają albo funkcję wykrywacza, albo broni. U żaglicowatych pozwalają ogłuszać ofiary, natomiast wiosłonosowate wykorzystują rozmieszczone tam receptory do wyczuwania i nakierowywania się na pole elektryczne planktonu. Ryby piły nie kopią co prawda w dnie, ale przesuwają po nim rzędy zębów. Wg naukowców, zajmują się wtedy ostrzeniem. Ich zachowanie porównywano z rochowatymi, które mają z rybami piłami wspólnego przodka, ale nie wykształciły piły.
  3. Powstała płynna antena, która zmienia kształt, a zatem i częstotliwość na jakiej pracuje. Tego typu urządzenia mogą doprowadzić w przyszłości do stworzenia elektroniki, która w odpowiedzi na bodźce zmienia na żądanie swoje funkcje. Antena jest dziełem uczonych z North Carolina State University i University of Utah. Jej twórcy wykorzystali przewodzący płynny eutektyczny stop galu i indu o niskiej lepkości, który wstrzyknęli do mikrokanału długości 51 milimetrów. Mikrokanał podzielony jest na cztery zbiorniki. Dwa środkowe są od siebie oddzielone na stałe, podczas gdy każdy z zewnętrznych od sąsiedniego środkowego oddzielają kolumienki, pomiędzy którymi jest wolna przestrzeń. Po wstrzyknięciu do środka metalicznego stopu na jego powierzchni spontanicznie formuje się podobna do membrany warstwa tlenku, która zapobiega zlewaniu się metalu pomiędzy sąsiadującymi ze sobą zbiornikami środkowymi i wewnętrznymi. W takim stanie całość działa na najwyższych częstotliwościach, tworząc krótką dipolową antenę składającą się z metalu w dwóch wewnętrznych zbiornikach. Gdy do jednego jej końca przyłożymy odpowiednie ciśnienie, dojdzie do przełamania warstwy tlenku i metal z jednego z zewnętrznych zbiorników połączy się z metalem z sąsiadującego zbiornika wewnętrznego, tworząc dłuższą, z więc pracującą na niższych częstotliwościach antenę. Przyłożenie ciśnienia do drugiego końca wywoła taki sam efekt, jeszcze bardziej wydłużając antenę, a zatem obniżając częstotliwość z jaką pracuje. Zmiany przebiegają błyskawicznie, w ciągu milisekund. To nie pierwsza antena o zmiennym kształcie, jednak prostota jej budowy daje temu urządzeniu przewagę nad innymi rozwiązaniami. W tym przypadku do przełączania nie jest potrzebny żaden zewnętrzny mechanizm. Antenę można tak skonfigurować, by przełączenie nastąpiło w ściśle określonych warunkach. Dzięki temu może ona działać jako czujnik. Obecnie proces przełączenia nie jest odwracalny, co jednak oznacza, że można ją wykorzystać w postaci pasywnego elementu pamięci. Antenę tę można np. zastosować jako element tagu RFID. Wyobraźmy sobie, że zamówiliśmy jakiś towar pocztą. Jeśli kurier upuścił naszą paczkę, to kształt anteny uległ zmianie, co zostanie wykazane podczas skanowania tagu. W ten sposób RFID spełni rolę czujnika - mówią twórcy anteny. Obecnie rozpoczynają oni prace nad odwracalnym przełączaniem anteny, co znacznie zwiększy jej możliwości. Pozwoli np. na jej konfigurację tak, by pracowała na tej częstotliwości, na której zachodzi w danym momencie mniej interferencji.
  4. Naukowcy z Georgia Institute of Technology (Gatech) znaleźli sposób na przechwytywanie i wykorzystywanie energii emitowanej przez przekaźniki radiowe, telewizyjne, sieci komórkowe czy satelity komunikacyjne. Takie źródła energii mogą w przyszłości zasilać sieci bezprzewodowych czujników, procesory czy inne układy scalone. Wokół nas znajduje się dużo elektromagnetycznej energii, ale nikt nie potrafił jej wyłapać - stwierdził profesor Manos Tentzeris z Gatechu. Używamy ultraszerokopasmowej anteny, która pozwala nam korzystać z różnych sygnałów w różnych zakresach częstotliwości, znacznie zwiększając nasze możlwości zbierania energii - dodaje uczony. Tentzeris i jego współpracownicy wykorzystują drukarkę atramentową do połączenia czujników, anten i innych urządzeń zbierających energię na papierowym lub polimerowym podłożu. Wynalazek został zaprezentowany podczas organizowanego przez Instytut Inżynierów Elektryków i Elektroników „Sympozjum anten i systemów propagacji". System Tentzerisa przechwytuje częstotliwości od 100 MHz do 15 GHz, konwertuje następnie energię mikrofalową z prądu zmiennego na prąd stały i przechowuje ją w akumulatorach bądź kondensatorach. Z samych częstotliwości wykorzystywanych przez telewizję udaje się zebrać setki mikrowatów mocy. System działający w szerszym spektru może zebrać ponad miliwat. Taka ilość energii wystarczy by zasilić wiele różnych urządzeń, w tym czujniki i mikroprocesory. Naukowcy z Gatech twierdzą, że połączenie ich wynalazku z superkondensatorami i urządzeniami pracującymi w cyklach pozwoli na zasilanie urządzeń wymagających do pracy ponad 50 miliwatów. Już w tej chwili są w stanie zasilać czujnik temperatury przechwytując fale elektromagnetyczne emitowane prze położony w odległości pół kilometra przekaźnik telewizyjny. Przygotowują też następny pokaz - chcą zaprezentować mikrokontroler, który zacznie działać po wystawieniu go na zewnątrz budynku. Urządzenie zbierające energię ze źródeł elektromagnetycznych może pracować samo lub współpracować z innymi. W połączeniu np. z ogniwem fotowoltaicznym może w nocy doładowywać akumulatory bądź zapobiegać ich rozładowywaniu się. Może też być używane jako zasilanie awaryjne w razie nagłej awarii, może wysłać sygnał alarmowy czy uruchomić automatyczne funkcje naprawcze. Postęp w tej dziedzinie jest bardzo szybki. Gdy Tentzeris rozpoczynał w 2006 roku prace nad obwodami drukowanymi na papierze, były one w stanie pracować na częstotliwościach 100-200 MHz. Teraz możemy na papierze drukować obwody pracujące z pasmem do 15 GHz. Gdy są drukowane na polimerach, współpracują z pasmem 60 GHz - mówi Rushi Vyas, współpracownik Tentzerisa.
  5. Inżynierowie z Uniwersytetu Florydzkiego opracowali prototyp pigułki, która wysyła potwierdzenie, że została połknięta. Naukowcy dodali do standardowej tabletki mikrochip i ulegającą strawieniu antenkę. Amerykanie mają nadzieję, że podobne pigułki będą wkrótce produkowane na dużą skalę i automatycznie powiadomią lekarzy, opiekunów i naukowców prowadzących testy kliniczne, że lek zażyto. To sposób monitorowania, czy pacjent zażywa medykament o czasie – wyjaśnia prof. Rizwan Bashirullah. Bardzo przydatny zresztą, gdyż ludzie często zapominają lub odmawiają połknięcia leków, a czasem nawet fałszują wyniki. Można sobie wyobrazić, jaki to koszt, gdy weźmie się pod uwagę hospitalizację, kosztowne procedury medyczne czy "sabotowanie" testów klinicznych. Badania wykazały, że pacjenci z chronicznymi chorobami przeważnie zażywają mniej więcej połowę przepisanych medykamentów. Bashirullah opowiada, że niesystematyczność w przyjmowaniu leków to poważny problem dla autorów testów klinicznych. Wyniki ulegają bowiem skrzywieniu albo są zupełnie bezużyteczne. W rezultacie naukowcy często wymagają wzrokowego potwierdzenia, że pigułka została połknięta, a to niezwykle kosztowne, gdy w studium bierze udział kilkuset albo nawet kilka tysięcy ochotników. Jak widać, odwołanie się do pomocy nowoczesnych technologii miało naprawdę duży sens. Bashirullah, doktorant Hong Yu, prof. Chris Batich oraz Neil Euliano z Convergent Engineering, firmy z siedzibą w Gainesville, zaprojektowali i przetestowali system złożony z dwóch podstawowych elementów. Standardową białą pigułkę pokryli etykietą z wytłoczonymi srebrnymi paskami. To one składają się na antenę, która została nadrukowana za pomocą nietoksycznego tuszu, zawierającego przewodzące nanocząstki srebra. Tabletkę wyposażono również w mikrochip rozmiarów kropki. Gdy pacjent połknie tabletkę, ta komunikuje się z drugim istotnym elementem systemu – urządzeniem noszonym np. przy pasku. Niewykluczone, że w przyszłości będzie ono stanowić część telefonu komórkowego lub zegarka. Informacja jest przekazywana dalej do komputera/komórki. Naukowcy z Florydy zaznaczają, że pigułka nie potrzebuje baterii, gdyż urządzenie każdego pacjenta wysyła pulsy elektryczne o niskim napięciu, które są odbierane przez chip i go doładowują. Dzięki temu tabletka może wysłać sygnał via antena. Antena ulega strawieniu, a mikrochip zostaje wydalony, ale nie przed potwierdzeniem zażycia pigułki. Prototyp tabletki przeszedł pomyślnie testy na modelach ludzi i nieboszczykach. Amerykanie zasymulowali też warunki panujące w żołądku, by stwierdzić, co pozostaje w przewodzie pokarmowym po antence. Dzięki temu ustalono, że ilości srebra są śladowe (stężenie tego pierwiastka nie przekracza poziomu wykrywanego w wodzie z kranu).
  6. Wraz z rozwojem technologii i rosnącą popularnością przenośnych urządzeń bezprzewodowych, specjaliści poszukują nowych sposobów produkcji anten. Chcą, by były one jak najmniejsze i przy tym elastyczne. Jednak problem w tym, że metalowe anteny, gdy je będziemy zginali, wcześniej czy później ulegną uszkodzeniu. Sposobem na rozwiązanie tego problemu okazuje się budowa... anten w płynie. Nad tego typu urządzeniami pracują Michael Dickey z North Carolina State University i Gianluca Lazzi z University of Utah. Użyli oni wysoce elastycznego polimeru zawierającego wewnątrz mikrokanaliki, w których znajduje się płynna metaliczna antena. Głównym składnikiem naszej anteny jest gal, gdyż to on właśnie utlenia i tworzy powłokę, która utrzymuje stabilność metalu wewnątrz mikrokanalików. Później, dzięki dodaniu doń indu powodujemy, że metal staje się ciekły w temperaturze pokojowej - mówi profesor Dickey. Co prawda gal oraz ind są drogimi metalami, jednak potrzeba ich tak mało, że płynna antena dla urządzenia przenośnego kosztowałaby zaledwie kilka centów. Podczas przeprowadzonych testów nowa antena była zginana we wszystkie strony, rolowana, rozciągana, zgniatana i ciągle zachowywała swoje właściwości. Próby pracy w zakresie od 1910 do 1990 MHz wykazały, że sprawność nowej anteny jest taka sama jak podobnego urządzenia wykonanego z miedzi. Urządzenie może mieć różną wielkość, dzięki czemu jest bardzo czułe i wychwyci nawet niezwykle słabe sygnały. Można je wbudowywać w ściany budynków czy w mosty, co pozwoli na łatwe zbieranie informacji o ich stanie. Anteny przydadzą się też żołnierzom, którzy będą mogli zabrać do plecaka urządzenia o powierzchni liczonej w metrach kwadratowych.
  7. Europejska Agencja Kosmiczna i fińska firma Patria Aviation Oy stworzyły elastyczną antenę z włókien sztucznych. Można ją przyszywać do ubrania i wykorzystywać do osobistej komunikacji satelitarnej. W ramach projektu ARTES (Advanced Research in Telecommunications Systems 5) opracowano kompletny proces produkcyjny, od etapu wyboru materiału po wytworzenie i sprawdzenie anteny. W efekcie otrzymano urządzenie, które wygląda jak część ubioru i może łączyć się z sieciami Iridium i GPS. System telefonii satelitarnej Iridium umożliwia dwustronną komunikację głosową oraz pozwala centrali na precyzyjne określenie położenia rozmówcy. Nie trzeba dodawać, jak bardzo tego typu antena przyda się wojskowym, naukowcom, służbom ratowniczym czy turystom.
  8. Nowe anteny opracowane przez amerykańskich naukowców mają zapewnić łączność nawet w wypadku prób blokowania sygnału. Co więcej, po wyłączeniu zasilania tracą one swoje właściwości elektromagnetyczne, przez co stają się niewykrywalne. Wspomniane dwie cechy – niezwykle przydatne w zastosowaniach wojskowych – to efekt materiału, z którego anteny zostały wykonane. Urządzenie przedstawione podczas tegorocznej konferencji APS Division of Plasma Physics wygląda jak neonówka, a nadaje i odbiera fale radiowe za pomocą przewodzącej prąd plazmy (rozgrzanego gazu, w którym elektrony oddzieliły się od jego cząstek). Prezentujący niezwykłą antenę T. R. Anderson i I. Alexeff twierdzą, że można w łatwy sposób zmieniać jej charakterystykę, a co za tym idzie – błyskawicznie dostosować ją do innej częstotliwości pracy. Wystarczy wyłączyć lub włączyć odpowiednie części aparatury zawierającej większą liczbę takich "świetlówek". Właściwość ta pozwala w prosty sposób omijać pasma radiowe, które w danej chwili są zagłuszane. Rzecz jasna, wyłączenie zasilania całej anteny powoduje, że plazma zamienia się w zwykły gaz, który nie przewodzi prądu i nie "odpowiada" na sygnały urządzeń wykrywających instalacje nadawczo-odbiorcze.
×
×
  • Dodaj nową pozycję...