Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów 'anihilacja' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 1 wynik

  1. Model antymaterii, w tym jej anihilacji ze „zwykłą" materią wydawał się prosty i zrozumiały, przecież samą antymaterię wytwarza się już rutynowo. Tak było do czasu eksperymentów, jakie w genewskim CERNie przeprowadził międzynarodowy zespół uczonych z Danii, Węgier, Wielkiej Brytanii i Japonii bombardując cząsteczkowy wodór wolnymi antyprotonami. Odmienność doświadczenia polegała na bombardowaniu nie pojedynczych atomów, lecz cząsteczek, na początek wybrano najprostsze: wodór, a dokładniej gazowy deuter (ciężki izotop wodoru z neutronem w jądrze). Za pociski posłużyły antyprotony, które spowolniono do jednej setnej prędkości światła. Ujemnie naładowane antyprotony nie przyciągają również posiadających ujemny ładunek elektronów, a niewielka prędkość pozwala na pominięcie skomplikowanych poprawek relatywistycznych. Eksperyment, którym kierował Japończyk z instytutu RIKEN, Yasunori Yamazaki, wykazał, że prawdopodobieństwo jonizacji cząsteczek deuteru zależy liniowo od prędkości antyprotonów, co stoi w sprzeczności z oczekiwaniami i dotychczasowym modelem dla atomowego wodoru. Nie jest znany mechanizm tego zachowania. Poszukując teoretycznego wyjaśnienia członkowie zespołu spekulują, że cząsteczkowy cel posiada mechanizm hamujący jonizację - podczas zbliżania się antyprotonu do protonu w jednym jądrze cząsteczki obecność protonu w drugim jądrze powoduje przemieszczenie orbitującej chmury elektronów. Im wolniejszy antyproton, tym więcej czasu pozostaje cząsteczce na dopasowanie się, stąd mniejsze prawdopodobieństwo jonizacji. To wielka niespodzianka, to zmienia nasze rozumienie dynamiki kolizji atomowych, która okazuje się, nawet na poziomie jakościowym, jeszcze w powijakach - mówi Yamazaki. Najbliższe eksperymenty mają sprawdzić, czy prawdopodobieństwo jonizacji zależy od odległości od celu oraz położenia w momencie kolizji.
×
×
  • Dodaj nową pozycję...