Znajdź zawartość
Wyświetlanie wyników dla tagów 'University of Bristol' .
Znaleziono 3 wyniki
-
Naukowcy z Centrum Fotoniki Kwantowej na University of Bristol wierzą, że dzięki ich ostatnim pracom kwantowe komputery mogą pojawić się w ciągu najbliższych 10 lat, a nie, jak dotychczas przypuszczano, nie wcześniej niż za 20-25 lat. Uczeni z japońskiego Tohoku University, izraelskiego Instytutu Weizmanna oraz holenderskiego Uniwersytetu Twente, pracujący pod kierunkiem naukowców z Bristolu, udoskonalili tzw. kwantowe błądzenie losowe. Opracowana w Bristolu technika wykorzystuje dwa fotony, poruszające się po obwodach krzemowego układu scalonego. Dotychczas przeprowadzono wiele eksperymentów z kwantowym błądzeniem losowym, a cały proces może być dokładnie modelowany przez współczesną fizykę. Jednak wszystkie eksperymenty wykorzystywały jeden foton. Po raz pierwszy udało się do kwantowego błądzenia losowego zaprząc dwa fotony. Dzięki wykorzystaniu dwóch fotonów możemy prowadzić obliczenia, które są wykładniczo bardziej skomplikowane, niż wcześniej dokonywane kalkulacje. To początek nowej dziedziny badań nad kwantową informatyką. To przetarcie drogi ku powstaniu kwantowych komputerów, które umożliwią nam zrozumienie najbardziej skomplikowanych problemów naukowych - mówi profesor Jeremy O'Brien, dyrektor Centrum Fotoniki Kwantowej. Naukowcy już rozpoczęli prace nad laboratoryjnymi narzędziami badawczymi, wykorzystującymi losowe błądzenie dwóch fotonów. Zwiększenie liczby fotonów z jednego do dwóch było zadaniem bardzo trudnym, gdyż muszą one być identyczne pod każdym względem. Uczeni wierzą jednak, że teraz dodawanie kolejnych fotonów będzie łatwiejsze. Za każdym razem gdy dodamy foton, wykładniczo wzrośnie stopień skomplikowania problemów, które będziemy mogli rozwiązać. Z jednego fotonu mamy 10 wyników, system dwufotonowy daje 100 odpowiedzi, a taki, który składa się z trzech fotonów - 1000 - dodaje O'Brien.
- 1 odpowiedź
-
- University of Bristol
- komputer kwantowy
-
(i 3 więcej)
Oznaczone tagami:
-
Uczeni z University of Bristol - Noah Linden, Sandu Popescu i Paul Skrzypczyk - zaproponowali stworzenie najmniejszej lodówki, składającej się zaledwie z kilku cząsteczek i zdolnej do osiągnięcia temperatury bliskiej zeru absolutnemu. Praca naukowców jest czysto teoretyczna, a jej olbrzymią zaletą jest fakt, że ich lodówka nie wymaga skomplikowanych zewnętrznych systemów. Dotychczas tworzone miniaturowe lodówki wykorzystywały np. lasery. Wspomniana lodówka składa się z trzech kubitów i wykorzystuje fakt istnienia splątania kwantowego. Jeden z kubitów należy umieścić w bardzo gorącej kąpieli, a drugi w kąpieli bliskiej temperaturze pokojowej. Chłodzony będzie trzeci kubit. Gdy pierwszy kubit pobiera energię z kąpieli, wpływa na drugi kubit "zachęcając go" do pobierania energii z trzeciego, schładzając go w ten sposób. Z obliczeń wynika, że im cieplejsza kąpiel, w której umieszczony zostaje pierwszy kubit, tym większe możliwości chłodzące drugiego kubitu. Co więcej, tak długo jak kąpiel pierwszego kubitu pozostaje gorąca, system działa, a więc trzeci kubit ciągle jest chłodzony. Na tym się jednak propozycje uczonych z Bristolu nie kończą. Wymyślili oni również najmniejszą lodówkę świata. Twierdzą, że identyczny mechanizm, wykorzystany w przypadku trzech kubitów można też zastosować do pojedynczego kutritu. To odpowiednik tritu, który może przyjmować nie jeden z dwóch (jak bit czy kubit), ale jeden z trzech stanów. Jak zauważył fizyk Nicolas Gisin z uniwersytetu w Genewie, naukowcy z Bristolu w interesujący sposób połączyli termodynamikę i naukę o kwantowym przechowywaniu informacji. W przyszłości prace Lindena, Popescu i Skrzypczyka mogą przydać się regulacji tempa reakcji pomiędzy proteinami w komórkach czy też do chłodzenia elementów kwantowych komputerów. Rodzi się również pytanie, czy tego typu miniaturowe lodówki istnieją w naturze.
- 1 odpowiedź
-
- Sandu Popescu
- Noah Linden
-
(i 4 więcej)
Oznaczone tagami:
-
„Wieczna wojna" pomiędzy ćmami a ich naturalnymi wrogami - nietoperzami jest doskonałym przykładem ciągłego doskonalenia technik ataku i obrony. Nietoperze lokalizują swoje ofiary przy pomocy ultradźwiękowego radaru. Ćmy, z biegiem ewolucji, wykształciły sobie futerko, które pochłania ultradźwięki - niczym antyradarowe powłoki niewidzialnych samolotów - i pozwala im się lepiej kryć. Różne gatunki nietoperzy wykształciły sobie umiejętność używania różnych częstotliwości i nie zawsze ta ochrona wystarcza. Również przy większej głośności sygnału skuteczność futerka się zmniejsza. Część gatunków ciem w odpowiedzi wykształciła sobie proste „uszy", komórki słuchowe pozwalające usłyszeć nadlatującego wroga z daleka i uciec z toru jego lotu. Nie zawsze się to udaje, ponieważ nietoperze mają i na to radę: latają nie prosto, lecz ruchem falistym. Co na to ćmy? Niektóre potrafią, słysząc nietoperza, złożyć skrzydła i spaść na ziemię, gdzie są bezpieczne. To istny wyścig zbrojeń. Naukowcy odkryli właśnie nową technikę, dającą wybranym nietoperzom nową przewagę w tej bezustannej walce. Europejski nietoperz mopek (Barbastella barbastellus) nauczył się obniżać siłę ultradźwiękowego sonaru do poziomu, przy którym ćma nie może go usłyszeć. To pierwszy znany przypadek użycia technik „skradania się" przez nietoperze w polowaniu. Holger Goerlitz z angielskiego University of Bristol, który odkrył tę nową kartę wojny, napracował się nad nią sporo. Żeby ocenić rzeczywistą głośność pisku nietoperzy trzeba również znać dokładnie odległość, z jakiej ją rejestrujemy. Zespół uczonych zainstalował sieć mikrofonów w miejscu, gdzie co noc przelatywały nietoperze. Różnice w czasie i głośności rejestrowania pisku nietoperza pozwalały ocenić jego odległość a więc również rzeczywistą głośność. Nie było to łatwe zadanie, ponieważ mikrofony rejestrowały jednocześnie dźwięki około setki nietoperzy. Ponieważ jednak nietoperze potrafią odróżnić własny pisk od cudzego, było to możliwe również dla współczesnej techniki. Okazało się, że mopek generuje dźwięk o głośności 94 decybeli. Porównując go do dźwięków słyszalnych przez człowieka, odpowiada to hałasowi zatłoczonej autostrady. Dla porównania, europejski nietoperz borowiaczek (borowiec Leislera, Nyctalus leisleri) generuje hałas o sile 127 decybeli - tyle, co ryczące wuwuzele, albo przelatujący odrzutowiec. Może to więc lepiej dla nas, że nie słyszymy częstotliwości używanych przez nietoperze? Ale żeby mieć pewność, że osłabienie siły ultradźwiękowego sygnału daje mopkom jakieś korzyści, trzeba było udowodnić, że ćmy naprawdę nie słyszą tego pisku. Dokonano tego poprzez uwięzienie ciem na trasie przelotu nietoperzy i monitorowanie ich systemu nerwowego, połączonego z komórką słuchową. Radar nietoperza borowiaczka ćmy słyszały już z trzydziestu metrów. Sprytny mopek zaś potrafił niepostrzeżenie podlecieć do tych samych ciem aż na 3,5 metra. Przewaga miażdżąca. Do kompletu badań Holgera Goerlitza i jego zespołu brakowało jeszcze oceny skuteczności nowej techniki nietoperzy. Czy naprawdę dają im znaczącą przewagę? Jak ocenić, ile i jakich owadów dany nietoperz zjada? Zespół bristolskiego uniwersytetu opracował zespół genetycznych znaczników, pozwalający zidentyfikować zjadane gatunki w nietoperzych odchodach. Według tych badań, aż 89 procent pożywienia mopków to ćmy, zaś aż 85% ciem to ćmy posiadające komórki słuchowe. Dla odmiany, w menu borowiaczka (który używa podobnej częstotliwości, co mopek, ale piszczy głośniej) ćmy stanowią najwyżej 56 procent. Nie jest znany żaden inny ewolucyjny zysk z używania cichszej echolokacji, poza większą skutecznością łapana tych właśnie ciem. I ma to swoją cenę: możliwość zbliżenia się do wybranej ofiary w zamian za mniejszą ogólną skuteczność wykrywania celu. Ale, jak dodaje Gorelitz, ćmy są doskonałym źródłem pożywienia: duże, tłuste i dające wiele energii. Per saldo zatem ciche polowanie się opłaca. Naukowcy przygotowali również do posłuchania próbki dźwiękowe pisku mopka oraz borowiaczka. Mają one dziesięciokrotnie, cyfrowo zmniejszoną częstotliwość, aby można było je usłyszeć.
- 4 odpowiedzi
-
- Holger Goerlitz
- głośność sygnału
- (i 8 więcej)