Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów 'Mars 2020' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 8 wyników

  1. Dziewiąty już lot marsjańskiego śmigłowca Ingenuity, stał się świetną okazją, by sprawdzić teren przed łazikiem Perseverance. Śmigłowiec dostarczył zdjęć interesujących formacji skalnych, których każda warstwa może zdradzić informacje na temat warunków klimatycznych, jakie w przeszłości panowały na Marsie. Na fotografiach zauważono też przeszkody, które łazik będzie musiał ominąć. Podczas lotu, wykorzystanego do przetestowania Ingenuity w roli powietrznego zwiadowcy, śmigłowiec przeleciał nad polem wydmowym o nazwie Seitah. Perseverance minie pole od południa, gdyż próba jego przekroczenia mogłaby być zbyt ryzykowna. Kolorowe zdjęcia wykonane przez śmigłowiec z wysokości 10 metrów zdradzają znacznie więcej szczegółów, niż zdjęcia z satelity Mars Reconnaissance Orbiter, które są wykorzystywane do planowania trasy łazika. Na fotografiach z orbity widoczne są skały wielkości 1 metra, zatem kontrola misji musi wspomagać się też zdjęciami wykonywanymi przez sam łazik. Gdy Perseverance podjedzie wystarczająco blisko jakiegoś punktu, wykonuje zdjęcia, które my analizujemy i porównujemy z obrazami z satelity. Dzięki Ingenuity zyskaliśmy fotografie, które świetnie uzupełniają naszą wiedzę, mówi Ken Williford z Jet Propulsion Laboratory. Na najnowszych zdjęciach widzimy obszar nazwany Wyniesionymi Krawędziami, których istnienie prawdopodobnie ujawnia, którędy w przeszłości płynęła woda. Planujemy odwiedzić Wyniesione Krawędzie i zbadać je z bliska. Zdjęcia ze śmigłowca zapewniają nam znacznie lepszą rozdzielczość niż fotografie z orbitera. Ich analiza pozwoli nam upewnić się, że warto zbadać Wyniesione Krawędzie, dodaje Williford. Ingenuity sfotografował też niewielkie, kilkudziesięciocentymetrowej wysokości piaszczyste wydmy. Łazik może w nich utkwić. Olivier Toupet, jeden z ekspertów odpowiedzialnych za kierowanie Perseverance, przyznaje, że piach to poważny problem, który spędza mu sen z oczu. Gdy po wylądowaniu misji Mars 2020 zespół naukowy zapytał, czy łazik mógłby pojechać w taki teren, Toupet zdecydowanie odmówił wysłania tam Perseverance. Toupet odpowiada też za moduł AutoNav łazika. Wykorzystuje on system sztucznej inteligencji do autonomicznego przemieszczania łazika na większe dystansy. Jednak AutoNav nie jest w stanie wykryć piasku, dlatego też naziemna załoga musi bez przerwy definiować strefy zakazane dla łazika. Dziewiąty lot Ingenuity okazał się zatem olbrzymim sukcesem. Bez śmigłowca nie byłoby możliwe tak dokładne wcześniejsze zbadanie terenu, zobaczenie obszarów, na które łazik nie może wjechać, określenie niewielkich miejsc potencjalnie cennych z naukowego punktu widzenia. Śmigłowiec to niezwykle cenny pomocnik w planowaniu drogi łazika. Pokazuje nam w wysokiej rozdzielczości teren, przez który chcemy przejechać. Dzięki niemu możemy lepiej ocenić rozmiar wydm i miejsca, gdzie wystają skały. To dla nas bezcenne informacje. Pozwalają zidentyfikować obszary, przez które można przejechać oraz określić cenne naukowo elementy, przyznaje Toupet. « powrót do artykułu
  2. Jutro na powierzchni Marsa ma wylądować łazik Perseverance ze śmigłowcem Ingenuity na pokładzie. To najbardziej skomplikowana misja kosmiczna od czasu lądowania człowieka na Księżycu. W chwili pisanie tego tekstu misja Mars 2020 znajduje się w odległości około 2 milionów 500 tysięcy kilometrów od Marsa i pędzi w jego stronę z prędkością 76 941 km/h. Łazik ma dotknąć powierzchni Marsa jutro, 18 lutego, o godzinie 21:55 czasu polskiego. Wyprawy na Marsa są niezwykle trudne. Dotychczas ludzkość przeprowadziła 47 misji, z czego całkowicie lub częściowo udanych było 24, w tym 16 zorganizowanych przez USA, 3 przez ZSRR, 1 wspólna UE/Rosja oraz po 1 przez UE, Indie, Zjednoczone Emiraty Arabskie i Chiny. Jak dotychczas jedyną agencją, która potrafi przeprowadzić pełną misję wraz z miękkim lądowaniem na Marsie jest NASA. Co prawda w 1971 roku na Czerwonej Planecie miękko lądował radziecki Mars 3, jednak kontakt z nim utracono już 104,5 sekundy później. Najprawdopodobniej udało się też wylądować Beagle'owi 2 wysłanemu przez Europejską Agencję Kosmiczną w 2003 roku, jednak nigdy nie nawiązano z nim kontaktu. Amerykanie próbowali lądować na Marsie 9-krotnie, z czego 8 razy im się udało. Nic więc dziwnego, że istnieje spore prawdopodobieństwo, że uda się i tym razem. Misja Mars 2020 wygląda podobnie do misji łazika Curiosity z 2011 roku. Jednak to tylko pozory. Łazik Perseverance jest najcięższym obiektem, jaki ludzkość próbowała umieścić na Marsie. Jego masa to 1025 kilogramów. NASA postanowiła przy okazji wypróbować nową osłonę termiczną, która podczas lądowania nie tylko ochroni lądujący pojazd, ale zbierze też więcej danych na temat temperatury, wiatru i rozgrzewania się osłony. Nowością jest też wspomagający lądowanie system TRN, który będzie w czasie rzeczywistym wykonywał zdjęcia terenu i na tej podstawie zdecyduje o ostatecznym punkcie lądowania. Dzięki niemu łazik można posadowić znacznie bardziej precyzyjnie, a przygotowujący misję specjaliści mieli większy wybór miejsca lądowania. Na pokładzie Perseverance znalazł się śmigłowiec Ingenuity. To pierwszy wysłany przez człowieka obiekt, który ma latać w atmosferze Marsa. Tego typu drony mogą przydać się w przyszłości podczas misji bezzałogowych i załogowych. Będą mogły bowiem służyć do szybkich zwiadów w okolicy. Po raz pierwszy w historii na Marsa wysłano też... fragmentu marsjańskich skał, które posłużą do kalibracji urządzeń badawczych łazika. Na powierzchnię Czerwonej Planety mają trafić fragmenty kombinezonów kosmicznych zaprojektowanych dla misji załogowych na Księżyc i Marsa. Z jednej strony, dzięki dobrze znanemu składowi, posłużą one do kalibracji urządzeń łazika. Z drugiej zaś będzie można zbadać, jak warunki panujące na Marsie wpływają na kombinezony. Jednak głównym zadaniem misji jest poszukiwanie śladów dawnego życia. Dlatego też na miejsce lądowania wybrano Krater Jezero. Naukowcy sądzą, że w przeszłości płynęła tam rzeka, która wpadała do jeziora. Jeśli gdzieś można znaleźć ślady życia, to właśnie tam. Dlatego też wybór padł na to miejsce, mimo iż jest to najtrudniejszy z dotychczas wybranych obszarów do lądowania na Czerwonej Planecie. Gdy Mars 2020 dotrze do Marsa, czeka nas słynne 7 minut horroru. To tytuł filmu, w którym NASA opisywała, w jaki sposób będzie lądował łazik Curiosity. Nazwa bierze się stąd, że od momentu wejścia pojazdu w atmosferę Marsa do chwili lądowania Curiosity minęło 7 minut. Tymczasem sygnał z Marsa na Ziemię biegnie 14 minut. Podobnie będzie w przypadku misji Mars 2020. Oznacza to, że w momencie, gdy NASA odbierze sygnał, iż lądujący pojazd wszedł w atmosferę Marsa łazik od 7 minut może leżeć roztrzaskany na powierzchni planety. Minie kolejnych 7 minut, zanim otrzymamy sygnał o lądowaniu. I to właśnie są te minuty horroru. Lądowanie Perseverance można będzie śledzić na NASA TV. Sekwencja lądowania będzie wyglądała następująco: – o godzinie 21:38 czasu polskiego moduł lądujący z łazikiem oddzieli się od pojazdu Mars 2020, – o 21:48 nastąpi wejście w atmosferę Marsa. Odbędzie się ono z prędkością około 19 500 km/h, – o 21:49 osłona termiczna rozgrzeje się do maksymalnej temperatury ok. 1300 stopni Celsjusza, – ok. 21:52 przy prędkości wciąż przekraczającej prędkość dźwięku zostaną rozwinięte spadochrony, dokładny czas ich rozwinięcia będzie korygowany na bieżąco przez komputer pokładowy, – 20 sekund po rozwinięciu spadochronów odłączona zostanie dolna osłona termiczna, dzięki czemu łazik będzie mógł włączyć radary i skorzystać z technologii precyzyjnego lądowania, – o 21:54, gdy zostanie wybrane dokładne miejsce lądowania, łazik wraz z przymocowanym do niego „plecakiem rakietowym” odłączy się od tylnej osłony i spadochronów, a przymocowane do „plecaka” silniki spowolnią pojazd i pokierują go na miejsce lądowania, – całość przybędzie na miejsce lądowania, a łazik z wysokości 20 metrów zostanie opuszczony na linach rozwijanych przez „plecak” i o godzinie 21:55 wyląduje na powierzchni Marsa. Liny zostaną zwolnione, a „plecak” odleci na bezpieczną odległość i rozbije się na powierzchni planety. NASA zastrzega, że centrum kontroli misji – w związku ze złożonością komunikacji na takie odległości – może nie być w stanie na bieżąco potwierdzać poszczególnych etapów lądowania. Przypomina przy tym, że łazik jest w stanie wylądować w pełni autonomicznie, bez potrzeby komunikacji z Ziemią. Po wylądowaniu jednym z pierwszych zadań łazika będzie wykonanie zdjęć otoczenia i przesłanie ich na Ziemię. Poniżej prezentujemy film wyjaśniający, jak będzie przebiegało lądowanie Perseverance.   « powrót do artykułu
  3. Przed kilkoma minutami nadeszło potwierdzenie, że łazik Perseverance i śmigłowiec Ingenuity bezpiecznie wylądowały na powierzchni Marsa. Po ponad 200 dniach podróży i przebyciu 470 milionów kilometrów NASA udało się posadowić na Czerwonej Planecie najcięższy obiekt, jaki kiedykolwiek ludzkość tam umieściła. Po emocjach lądowania rozpoczyna się zasadnicza część misji Mars 2020 – badania w poszukiwaniu dawnego życia na Marsie. Wyprawy na Marsa są niezwykle trudne. Do wczoraj ludzkość miała na swoim koncie 47 misji, z czego całkowicie lub częściowo udanych było 24, w tym 16 zorganizowanych przez USA, 3 przez ZSRR, 1 wspólna UE/Rosja oraz po 1 przez UE, Indie, Zjednoczone Emiraty Arabskie i Chiny. Misja Mars 2020, w ramach której lądował Perseverance, jest zatem 48. misją w ogóle, 25. udaną, w tym 17. udaną misją USA. Jak dotychczas jedyną agencją, która potrafi przeprowadzić pełną misję wraz z miękkim lądowaniem na Marsie jest NASA. Co prawda w 1971 roku na Czerwonej Planecie miękko lądował radziecki Mars 3, jednak kontakt z nim utracono już 104,5 sekundy później. Najprawdopodobniej udało się też wylądować Beagle'owi 2 wysłanemu przez Europejską Agencję Kosmiczną w 2003 roku, jednak nigdy nie nawiązano z nim kontaktu. Razem z dzisiejszym lądowaniem Amerykanie próbowali lądować na Marsie 10-krotnie, z czego 9 razy im się udało. Perseverance Łazik Perseverance – który bardziej szczegółowo opisaliśmy tutaj – z wyglądu przypomina swojego poprzednika, Curiosity, który bada Marsa od 2012 roku. Jednak został wyposażony w wiele nowatorskich technologii, w tym w nowy system napędowy, dzięki któremu będzie najszybszym łazikiem kiedykolwiek wysłanym na Marsa. Powodem, dla którego przykładaliśmy taką wagę do prędkości jest fakt, że jeśli jedziemy, to nie wykonujemy badań naukowych. Jeśli wybierasz się do Disneylandu, to chcesz dojechać do Disneylandu. Nie chodzi o to, by jechać, a by znaleźć się na miejscu, mówi Rich Rieber, którego zespół przez pięć lat pracował nad napędem łazika. Perseverance otrzymał nowy układ napędowy, zawieszenie, koła, system rozpoznawania otoczenia czy algorytmy planowania trasy. Wszystko po to, by łazik mógł nawigować po trudnym terenie Krateru Jezero. Perseverance ma przemieszczać się trzykrotnie szybciej, niż jakikolwiek inny łazik marsjański, dodaje Matt Wallace, zastępca dyrektora misji. Daliśmy mu sporo autonomii, sztucznej inteligencji, by mógł wykonywać swoją misję. Prędkość łazika nie będzie imponująca. Wyniesie maksymalnie 4,4 cm/s (158,4 m/h). Będzie najszybszy nie dlatego, że będzie jechał szybciej ale dlatego, że mniej czasu będziemy spędzali na planowaniu trasy, wyjaśnia Rieber. Perseverance ma wgraną mapę, stworzą na podstawie zdjęć z satelity Mars Reconnaissance Orbiter. Pokazuje ona obiekty mniejsze niż 30 centymetrów. Mapa ta pozwoli łazikowi zorientować się, w którym miejscu się znajduje. Wyposażony jest też w dwie kamery nawigacyjne (Navcams) umieszczone na maszcie, które przekazują mu obraz stereo, oraz sześć pokładowych kamer służących wykrywaniu przeszkód. Navcams zapewniają 90-stopniowy kąt widzenia i z odległości 25 metrów potrafią wykryć obiekty rozmiarów piłeczki golfowej. Kamery, w połączeniu z algorytmami sztucznej inteligencji mają umożliwić łazikowi nawigację w czasie rzeczywistym. Będzie on w stanie zauważyć przeszkody i większość z nich ominąć bez pomocy z Ziemi. Każdego marsjańskiego ranka centrum sterowania wyśle łazikowi marszrutę na dany dzień i poczeka, aż Perseverance zamelduje, że dotarł do wyznaczonego punktu. To znakomicie usprawni poruszanie się. Wcześniejsze łaziki najpierw wykonywały zdjęcia otoczenia, wysyłały je na Ziemię i czekały do następnego dnia na instrukcje. Dlatego też np. Curiosity w dni, w których miał się przemieszczać, spędzał na podróży jedynie 13% czasu. Perseverance co najmniej potroić ten wynik. Oczywiście to wszystko brzmi prosto, ale proste nie jest. Inżynierowie na Ziemi są w stanie obliczyć, jak daleko Perseverance się przemieścił zbierając dane o obrotach każdego z jego sześciu kół. Co jednak w przypadku, gdy któreś koło będzie miało poślizg bo znajdzie się na piasku? Jak wówczas określić, jak daleko od wyznaczonej trasy znalazł się łazik? Może to obliczyć komputer pokładowy łazika, jednak jego moc obliczeniowa nie jest imponująca. Nasz komputer ma mniej więcej wydajność bardzo dobrego komputera z roku około 1994, mówi Rieber. Problemem jest tutaj promieniowanie kosmiczne. Im bardziej nowoczesny procesor tym mniejsze i gęściej upakowane tranzystory, przez co są one bardziej podatne na zakłócenia powodowane promieniowaniem. Głównym zadaniem Perseverance jest znalezienie śladów życia. Żeby jednak na nie trafić, łazik musi się przemieszczać, by badać kolejne miejsca. Im bardziej efektywnie będzie to robił, tym większa szansa, że dokona odkrycia. Na miejsce lądowania wybrano Krater Jezero. Naukowcy sądzą, że w przeszłości płynęła tam rzeka, która wpadała do jeziora. Jeśli gdzieś można znaleźć ślady życia, to właśnie tam. Dlatego też wybór padł na to miejsce, mimo iż jest to najtrudniejszy z dotychczas wybranych obszarów do lądowania na Czerwonej Planecie. Ingenuity Pod „brzuchem” łazika umieszczono śmigłowiec Ingenuity, którego budowę szczegółowo opisywaliśmy. Został on zabrany w misję niejako przy okazji. Nie stanowi zasadniczej jej części. Śmigłowiec nie będzie prowadził żadnych badań. Wysłano go po to, by sprawdzić, czy potrafimy zbudować drona poruszającego się w atmosferze Marsa. Takie drony mogą przydać się podczas przyszłych misji załogowych i bezzałogowych np. do dokonywania szybkich zwiadów w okolicy. Zadaniem Ingenuity będzie wykonanie serii 90-sekundowych lotów. Ze względu na odległość pomiędzy Ziemią a Marsem jakakolwiek komunikacja w czasie rzeczywistym czy sterowanie będą niemożliwe. Jeśli wszystko przebiegnie zgodnie z planem śmigłowiec odbędzie loty i wykona kilka zdjęć. I to wszystko. Jednak dostarczy bezcennych danych, dzięki którym możliwe będzie zbudowanie w przyszłości pojazdów latających wykonujących bardziej ambitne zadania w atmosferze Marsa i – być może – innych planet. Jako, że Ingenuity to misja demonstracyjna, NASA akceptuje w tym wypadku wyższe ryzyko niepowodzenia. Zgodnie z klasyfikacją NASA misja Perseverance należy do Klasy B czyli "wysoce priorytetowych zasobów narodowych, których utrata będzie miała duży wpływ na [...] osiągnięcie celów naukowych". W takich misjach wymaga się minimalizacji ryzyka z minimalnymi kompromisami. Dlatego przy ich przygotowaniu przez wiele lat pracują olbrzymie rzesze ludzi, którzy m.in. przygotowują odpowiedni sprzęt. Przed Ingenuity nie stawia się takich wymagań, dlatego też wiele elementów śmigłowca zostało wykonanych z powszechnie dostępnych materiałów. Na przykład zastosowano w nim standardowy procesor Snapdragon 801. Dlatego też, ironią losu, śmigłowiec, który ma po po prostu latać, dysponuje mocą obliczeniową o całe rzędy wielkości większą niż łazik, wykonujący złożone badania naukowe. Jako, że moc procesora znakomicie przewyższa moc potrzebną do samego sterowania, Ingenuity wyposażono też w kamerę rejestrującą obraz z prędkością 30 klatek na sekundę oraz oprogramowanie nawigacyjne, które na bieżąco obraz analizuje. Twórcy śmigłowca mówią, że część elementów – jak np. laserowy miernik wysokości – zakupili w firmie SparkFun Electronics, produkującą elektronikę do zabawek. Stwierdziliśmy, że co prawda to sprzęt komercyjny, ale go przetestujemy. Jeśli będzie działał, będziemy go używali, mówi Tim Canham z Jet Propulsion Laboratory. Ingenuity będzie działał w trybie półautonomicznym. Z Ziemi będzie otrzymywał szczegółowy plan lotu, a zadaniem śmigłowca będzie go wykonać, utrzymując się na ścieżce. Twórcy śmigłowca nie mieli czasu na opracowanie dla niego prawdziwej autonomii. Ale nie wykluczają, że w przyszłości tego typu dronom będzie można wydać polecenie, by np. podleciały do konkretnej skały i wykonały jej zdjęcia, a one to zrobią, bez otrzymanego wcześniej z Ziemi szczegółowego planu. Istnieją już plany koncepcyjne przyszłych misji, w ramach których pracujemy nad większymi śmigłowcami, zdolnymi do wykonania takich zadań. Ale jeśli przypomnimy sobie pierwszy marsjański łazik, Pathfindera, to miał on bardzo proste zadaniem. Miał jeździć w kółko wokół stacji bazowej, wykonywać zdjęcia i pobierać próbki skał. Skromnie planujemy misje demonstracyjne. I tak też postępujemy z pierwszym śmigłowcem na Marsie, dodaje Canham. Obecnie na Marsie i w jego okolicach pracuje zatem 11 misji. Oprócz Mars 2020 (Perseverance, są to orbitery Mars Odyssey (NASA), Mars Express (ESA), Mars Reconnaissance Orbiter (NASA), Mars Orbiter Mision (ISRO – Indie), MAVEN (NASA), HOPE (Zjednoczone Emiraty Arabskie), Tianwen-1 (Chiny) oraz łazik Curiosity (NASA) i lądownik InSight (NASA). « powrót do artykułu
  4. Mars 2020 rozpoczęła procedurę zbliżania się do Czerwonej Planety. Misja, w ramach której na powierzchni Marsa wyląduje łazik Perseverance, znajduje się w odległości 80 milionów kilometrów od planety i pędzi w jej kierunku z prędkością ponad 82 000 km/h. Zgodnie z planem uruchomiono sekwencję zbliżania, a za 41 dni, 18 lutego, Perseverance wejdzie w atmosferę Marsa i po 7 minutach wyląduje na jego powierzchni. Pracujemy nad ostatnimi korektami, by zapewnić łazikowi idealną pozycję do lądowania w jednym z najbardziej interesujących miejsc na Marsie. Nie możemy się doczekać, aż koła łazika dotkną powierzchni, stwierdził Fernando Abilleira, zastąpca dyrektora misji. Perseverance to najbardziej skomplikowane laboratorium naukowe, jakie kiedykolwiek wysłano na Marsa. Kluczową rolę w poszukiwaniu śladów przeszłego życia na Czerwonej Planecie odegrają instrumenty SHERLOC, który ma wykrywać minerały i materię organiczną, oraz PIXL, który stworzy mapę składu chemicznego skał i osadów. Łazik wyposażono też w aparaty fotograficzne o dużej rozdzielczości. Bardzo interesującym instrumentem jest SuperCam, kamera współpracująca z laserem. To udoskonalona wersja ChemCam zamontowana na łaziku Curiosity. SuperCam wykorzystuje podczerwony laser, by podgrzać odległe skały czy grunt do temperatury 10 000 stopni Celsjusza i je odparować. Następnie kamera rejestruje obraz tak powstającej plazmy i określa skład chemiczny odparowanego materiału. Tę metodę badawczą nazywa się laserowo indukowaną spektroskopią rozpadu. Nie można też zapominać o czymś zupełnie wyjątkowym, czyli o śmigłowcu, który stanowi część misji Mars 2020. O nim i innych instrumentach oraz misjach marsjańskich pisaliśmy w notce Jutro startuje najtrudniejsza misja od czasów lądowania człowieka na Księżycu – Mars 2020. Perseverance wyląduje w Kraterze Jezero, bardzo interesującym miejscu otoczonym wysokimi klifami, zawierającym wydmy i pola wielkich głazów. Przed ponad 3,5 miliardami lat płynęła tam rzeka. Naukowcy mają nadzieję, że w naniesionych przez nią osadach znajdą ślady dawnego życia. Krater Jezero został dokładnie obfotografowany przez pojazdy krążące na orbicie Marsa. Jednak jego zbadanie wymaga umieszczenia tam zaawansowanego laboratorium. Perseverance jest pierwszą misją, która pobierze próbki z Marsa po to, by w przyszłości trafiły one na Ziemię. Łazik wyposażono w wiertło, dzięki któremu będzie mógł pobierać fragmenty skał i gruntu wielkości szkolnej kredy. Próbki będą przechowywane na pokładzie łazika do czasu, aż przybędzie on do wyznaczonego miejsca, gdzie pozostawi je, by przyszłe misje mogły je zabrać. Teoretycznie łazik może też dostarczyć próbki bezpośrednio do lądownika, którego wyprawę – właśnie po próbki – planują NASA i ESA. Zapraszamy do obejrzenia animacji przedstawiającej lądowanie Perseverance na Marsie.   « powrót do artykułu
  5. Łazik marsjański Perseverance, który ma wystartować za trzy tygodnie, zabierze ze sobą nietypowy ładunek. Na jego pokładzie znajdzie się niewielki autonomiczny helikopter Ingenuity. Jeśli wszystko pójdzie dobrze, będzie on pierwszym pojazdem wysłanym przez człowieka, który wykona wspomagany silnikiem lot w atmosferze innej planety. Lot na Marsie może nie wydawać się niczym imponującym, ale jest to niezwykle trudne zadanie. Dość wspomnieć, że gęstość atmosfery Marsa to zaledwie 1% gęstości atmosfery ziemskiej, a temperatura na Czerwonej Planecie może w nocy spaść do -100 stopni Celsjusza. Wyobraźmy sobie lekki wietrzyk na Ziemi. A teraz wyobraźmy sobie 100-krotnie mniej gęste powietrze, które trzeba wykorzystać do uzyskanie siły nośnej i kontroli pojazdu, mówi Theodore Tzanetos z Jet Propulsion Laboratory. Żaden ziemski śmigłowiec nigdy nie latał w tak rozrzedzonej atmosferze. Preserverance i Ingenuity mają wystartować 20 lipca bieżącego roku (okno startowe będzie otwarte do 11 sierpnia), a lądowanie na Marsie planowane jest na 18 lutego przyszłego roku. Około 60 marsjańskich dni później łazik opuści drona na powierzchnię planety i odsunie się od niego na odległość 100 metrów. Ingenuity waży 1,8 kilograma. Wyposażono go w dwa umieszczone jeden na drugim rotory z włókna węglowego. Obracają się one w przeciwnych kierunkach z prędkością około 2400 obrotów na minutę. To pięciokrotnie szybciej niż wirniki śmigłowców na Ziemi. Gdy obracały się wolniej, dron nie mógłby oderwać się od powierzchni Marsa. Gdyby jednak obracały się znacznie szybciej, zewnętrzne krawędzie wirników zbliżyłyby się do prędkości dźwięku, wywołały falę uderzeniową, która zdestabilizowałaby pojazd. Głównym zadaniem Ingenuity jest sprawdzenie wykorzystanych technologii. Twórcy drona mają nadzieję, że w ciągu 30 dni uda im się wykonać 5 lotów. Żaden z nich nie ma trwać dłużej niż 90 sekund. Dron ma nie przekraczać wysokości 10 metrów, a długość każdego z lotów ma być nie większa niż 300 metrów. Josh Ravich, który stał na czele zespołu inżynierów projektujących Ingenuity, mówi, że dron będzie nieco mniej manewrowy niż drony wykorzystywane na Ziemi. Musimy jednak pamiętać, że marsjański śmigłowiec musi przetrwać start rakiety, lot z Ziemi na Marsa, wejście w atmosferę i lądowanie oraz zimne marsjańskie noce. Dlatego też inżynierowie przez wiele lat pracowali nad znalezieniem równowagi pomiędzy zużyciem energii, wytrzymałością, wagą i manewrowością. Większość energii, którą Ingenuity pozyskuje z niewielkiego panelu słonecznego umieszczonego nad wirnikami, zostanie zużyta nie na loty, a na ogrzewanie systemów drona podczas zimnych marsjańskich nocy. Inżynierowie zastanawiali się nad izolacją cieplną z aerożelu, jednak zrezygnowali z niej, gdyż uznali, że będzie zbyt wiele ważyła. Modelowanie wykazało, że marsjańska atmosfera, która w większości składa się z dwutlenku węgla, będzie w pewnym stopniu zapobiegała utracie ciepła przez drona. Naukowcy uznali też, że najlepszą porą na pierwszy lot będzie późny marsjański poranek. Słońce świeci wówczas na tyle mocno, że powinno zapewnić Ingenuity wystarczającą ilość energii do lotu. Jednak nie można lotu odkładać na późniejszą porę dnia, gdyż wówczas powierzchnia Marsa mocniej się nagrzewa przez co atmosfera unosi się, rozrzedza i lot byłby wówczas jeszcze trudniejszy. Jeśli misja Ingenuity się powiedzie, NASA będzie wyposażała w śmigłowce kolejne misje marsjańskie. Drony będą służyły łazikom, i w przyszłości ludziom, jako zwiadowcy, pokazujący, co znajduje się w trudnych do osiągnięcia miejscach, jak klify czy wulkany. Obecnie możemy obserwować Marsa albo z powierzchni, albo z orbity. A 90-sekukndowy lot drona pozwoli nam na obejrzenie setek metrów terenu znajdującego się przed nami, mówi Ravich. « powrót do artykułu
  6. Za miesiąc, 20 lipca, wystartuje kolejna misja na Marsa. Tym razem NASA chce umieścić na powierzchni Czerwonej Planety łazik Perseverance. Zadaniem pojazdu będzie poszukiwanie śladów życia w Kraterze Jezero oraz przetestowanie kluczowych technologii, które zostaną wykorzystane podczas przyszłych robotycznych oraz załogowych misji marsjańskich. Jednocześnie Perseverance pobierze próbki gruntu i skał, które zostaną przywiezione na Ziemię w ramach kolejnych misji. Pięćdziesiąt jeden lat temu NASA kończyła przygotowania do pierwszej załogowej misji na Księżyc. Obecnie stoimy w przededniu kolejnego ważnego momentu eksploracji kosmosu: zebrania próbek na Marsie, stwierdził szef NASA, Jim Bridenstine. Misja Mars 2020 została zaplanowana w grudniu 2012 roku. Od początku zakładano, że wystartuje ona latem 2020 roku. Na razie wszystko wskazuje na to, że misja odbędzie się zgodnie z planem. Biorąc pod uwagę pozycje Ziemi i Marsa, okienko startowe do misji na Czerwoną Planetę otwiera się co 26 miesięcy. Jeśli Perseverance nie wystartuje w planowanym terminie, trzeba będzie czekać do września 2022 roku. Takie opóźnienie poważnie zaburzyłoby realizację długoterminowych planów realizowanych przez NASA w ramach Mars Exploration Program. Każda z marsjańskich misji obarczona jest sporym ryzykiem. W przypadku Mars 2020 największym problemem jest posadowienie łazika Perseverance na powierzchni. Jest to bowiem najcięższy ładunek, jaki kiedykolwiek próbowano umieścić na Marsie. Inżynierowie NASA musieli opracować nowe procedury testowe, by sprawdzić, czy zaprojektowane przez nich spadochrony spełnią stawiane przed nimi zadanie. Innym poważnym wyzwaniem technicznym było stworzenie i przetestowanie Sample Caching System, najbardziej złożonego i czystego mechanizmu zbierania próbek kiedykolwiek wysłanego w kosmos. Jako, że ostateczne przygotowanie do misji Mars 2020 przypadły na szczególny moment, pandemię koronawirusa, zespół  postanowił uhonorować walczących z nią medyków medyków. Do obudowy łazika przymocowano specjalną plakietkę. Na aluminiowej płytce o wymiarach 8x13 centymetrów widzimy Ziemię wspartą na eskulapie, symbolu medycyny. Zaznaczono też trajektorię lotu misji Mars 2020 na Marsa. Chcieliśmy uhonorować tych, którzy postawili dobro innych nad swoim dobrem osobistym. Mamy nadzieję, że gdy przyszłe generacje polecą na Marsa i napotkają na nasz łazik, plakietka przypomni im, że w 2020 roku na Ziemi byli tacy ludzie, mówi Matt Wallace, zastepca dyrektora projektu Perseverance. Nowy marsjański łazik poszuka śladów życia, będzie badał klimat i geologię Marsa, przygotuje grunt pod przyszłe misje i zbierze oraz przechowa próbki gruntu. Już teraz NASA i Europejska Agencja Kosmiczna zastanawiają się nad przyszłymi misjami, które odbiorą te próbki od Perseverance i przywiozą je na Ziemię do dalszej analizy. Okienko startowe dla misji Mars 2020 będzie otwarte od 20 lipca do 11 sierpnia. Niezależnie od tego, kiedy misja wystartuje, lądowanie przewidziane jest na 18 lutego 2021 roku. Wyznaczenie ścisłej daty lądowania pozwoli lepiej zrozumieć warunki panujące w miejscu lądowania oraz odpowiednio dostosować pracę satelitów krążących na orbicie Marsa, których zadaniem będzie pomoc w komunikacji pomiędzy lądującą misją Mars 2020 a Ziemią. « powrót do artykułu
  7. W lipcu przyszłego roku zostanie wystrzelona misja Mars 2020. Po trwającej pół roku podróży lądownik z ważącym 1 tonę łazikiem rozpocznie sekwencję lądowania na dnie dawnego jeziora. Na miejsce lądowania wybrano Krater Jezero. Lądowanie będzie najbardziej ryzykownym i najmniej przewidywalnym momentem całej misji. Ci, którzy pamiętają słynne „7 minut horroru” podczas lądowania łazika Curiosity mogą wzruszyć ramionami sądząc, że NASA po prostu powtórzy to, co zrobiła w 2012 roku. Jednak pomiędzy oboma lądowaniami jest pewna zasadnicza różnica. Curiosity lądował w bezpiecznym płaskim terenie Krateru Gale. Mars 2020 wyląduje w miejscu znacznie trudniejszym, pełnym głazów i innych niebezpieczeństw. Aby zwiększyć powodzenie przyszłorocznego lądowania misję Mars 2020 wyposażono w technologię Terrain Relative Navigation, czyli autopilota. Autopilot ten to efekt 15 lat pracy inżyniera Andrew Johnsona z Jet Propulsion Laboratory. Specjalista pracował przez 15 lat nad urządzeniem, które będzie potrzebne przez... 10 sekund. Jednak te 10 sekund zdecydują o tym, czy lądowanie na Marsie się uda czy też nie, mówi Johnson. Gdy łazik znajdzie się na wysokości 4,2 kilometra nad powierzchnią Marsa i będzie opadał na spadochronach, jego komputer pokładowy zacznie szybko wykonywać fotografie powierzchni Czerwonej Planety. Rozdzielczość każdego zdjęcia będzie wynosiła 6 metrów na piksel, a system lądowania będzie je analizował, szukając głazów, szczelin, kraterów, klifów i innych przeszkód. Fotografie te zostaną też porównane ze zdjęciami wykonanymi wcześniej z orbity. Gdy komputer pokładowy zidentyfikuje 15 charakterystycznych cech terenu, przełączy swój system wizyjny na większą rozdzielczość. Na całą opisaną powyżej sekwencję będzie tylko 10 sekund. W tym czasie muszą zostać wykonane zdjęcia, ma być przeprowadzona ich analiza, komputer dokona oceny miejsca lądowania, porówna przewidywane miejsce lądowania z tym, wybranym na podstawie zdjęć z orbity i zdecyduje, czy należy zmieć tor lotu. Wszystko w ciągu wspomnianych 10 sekund, gdyż po tym, gdy od lądownika oddzieli się osłona termiczna nie będzie możliwe dokonywanie żadnych korekt lotu. To wszystko może wyglądać na niepotrzebne ryzyko i komplikowanie sekwencji lądowania, ale ma swoje głębokie uzasadnienie. O ile bowiem wcześniej łazik był w stanie określić swoje miejsce lądowania z dokładnością do 3000 metrów, nowa technologia ma pozwolić na zmniejszenie marginesu błędu do zaledwie 40 metrów. I NASA nie chodzi tutaj o bicie rekordów. Tylko bowiem taka technologia pozwala nam na lądowania w tak interesujących z naukowego punktu widzenia miejscach, jak Krater Jezero, mówi Johnson. NASA szacuje, że bez opracowanego przez Johnsona systemu wizyjnego szansa na udane lądowanie Jezero wynosiłaby 85%. Dzięki Terrain Relative Navigation wrasta ona do 99%. Skąd takie zaufanie do systemu, którego nie można było nigdy wcześniej przetestować w miejscu, w którym będzie używany? Wszystko dzięki wyczerpującym testom, jakie system przechodził w kwietniu i maju bieżącego roku na Pustyni Mojave, w tym w Dolinie Śmierci. Johnson i jego koledzy odbyli ponad 600 lotów śmigłowcem na wyskości do 5 kilometrów nad Ziemią. Do śmigłowca był przyczepiony marsjański system wizyjny, którego zadaniem było wykonywanie fotografii, ich analiza, porównywanie, znalezienie miejsca do lądowania, ocena ryzyka i przeprowadzenie symulowanego lądowania. « powrót do artykułu
  8. Po trzech dniach intensywnych rozmów odbyło się niewiążące głosowanie na temat miejsca lądowania przyszłego łazika marsjańskiego, który poleci na Czerwoną Planetę w ramach misji Mars 2020. Głosowanie to jeden z ostatnich aktów wieloletnich analiz naukowo-inżynieryjnych, prowadzonych przez specjalistów z NASA. Wybrali oni cztery możliwe miejsca posadowienia łazika: Jezero, zastygła delta rzeki uchodzącej do krateru uderzeniowego; Północno-Wschodnia Syrtis, stara skorupa, która mogła zostać uformowana przez podziemne źródła mineralne oraz Columbia Hills, potencjalne miejsce istnienia gorących źródeł, które już odwiedził łazik Spirit. Niedawno dodano do tego miejsce zwane Midway, o budowie bardzo podobnej do Północno-Wschodniej Syrtis, z założeniem, że łazik mógłby odwiedzić i Jezero i Midway. Przy rozważaniu wszystkich miejsc brano pod uwagę samą możliwość wylądowania oraz wartość naukową miejsca. Po podliczeniu 158 oddanych głosów okazało się, że Jezero i Północno-Wschodnie Syrtis szły niemal łeb w łeb, a tuż za nimi uplasowało się Midway. Przy założeniu zaś przedłużonej misji wygrał tandem Jezero-Midway. W obu kategoriach najmniej głosów przyznano Columbia Hills. Głosowanie, jak wspomniano, było niewiążące. Ostateczną decyzję podejmie zespół pracujący przy Mars 2020 oraz szef naukowy NASA Thomas Zurbuchen. Nie wiadomo, na ile będą się oni kierowali wynikami głosowania. Jednym z celów misji Mars 2020 jest przeprowadzenie odwiertów na powierzchni Czerwonej Planety i pobranie próbek, które w przyszłości miałyby zostać przywiezione na Ziemię. « powrót do artykułu
×
×
  • Dodaj nową pozycję...