Znajdź zawartość
Wyświetlanie wyników dla tagów 'EMBL' .
Znaleziono 2 wyniki
-
Najstarsze zalążki kory mózgowej: 600 mln lat temu
KopalniaWiedzy.pl dodał temat w dziale Nauki przyrodnicze
Jak daleko sięgają ewolucyjne źródła naszego ludzkiego rozumu? Najnowsze badania europejskich biologów molekularnych dowodzą, że przynajmniej 600 milionów lat wstecz, do wspólnego przodka naszego i spokrewnionych z dżdżownicą morskich organizmów: wieloszczetów. Raju Tomer i Detlev Arendt, uczeni z European Molecular Biology Laboratory (EMBL, Europejskie Laboratorium Biologii Molekularnej) oparli swoje badania na zupełnie nowej metodzie porównawczej. Zamiast porównywać kształt, umiejscowienie i funkcje poszczególnych komórek mózgowych, wybrali katalogowanie genomu w badanych komórkach i porównywanie ekspresji genów metodą nazwaną „profilowaniem komórkowym przez rejestrację obrazów". Pozwoliło im to odnaleźć ewolucyjne podobieństwo pomiędzy mózgiem człowieka a mikromózgiem nereidów - pokrewnych ziemnym dżdżownicom zwierzętom morskim z gromady wieloszczetów, należących do pierścienic. Dlaczego właśnie wieloszczety? Organizmy te, żyjąc w rytych przez siebie norach aktywnie poszukują pożywienia i wykazują umiejętność uczenia się - dlatego uznano je za doskonały materiał do poszukiwania odpowiedników mózgu kręgowców u bezkręgowców. Szukano wspólnych elementów - komórek spokrewnionych ewolucyjnie u tak odległych gatunków. I znaleziono. Jak się okazuje, zalążki ludzkiej kory mózgowej to obecne u wszystkich bezkręgowców ciała grzybkowate (nazwane tak ze względu na kształt). Ludzka kora mózgowa jest głównym ośrodkiem uczenia się - gromadzi, analizuje i zapamiętuje informacje zmysłowe i skupia wyższe funkcje mózgu. Podobną rolę - choć oczywiście w ograniczonym zakresie - pełnią ciała grzybkowate w mózgach bezkręgowców: są centrum analizy danych zmysłowych, skojarzeń i podejmowania decyzji w oparciu o doświadczenie. Zostały one odkryte już w 1850 roku przez francuskiego biologa Felixa Dujardina, który jako pierwszy uważał, że pozwalają one insektom podejmować decyzje świadomie, na poziomie wyższym niż instynkt. Pierwociny ośrodków decyzyjnych opartych na pamięci - jak uważają autorzy badania - musiały wykształcić się wśród organizmów przydennej sfery oceanu, gdzie pod dostatkiem było organicznych szczątków, mogących służyć za pożywienie. W tej sytuacji analizowanie bodźców węchowych w oparciu o zapamiętane doświadczenia pozwalało lepiej wybierać to, co nadawało się do zjedzenia. Badania w oparciu o nową metodę będą kontynuowane i pozwolą lepiej odtworzyć i zrozumieć ewolucję mózgu, a przez to również funkcje jego poszczególnych obszarów. Naukowcy są ciekawi, jak wyglądał mózg ostatniego wspólnego przodka kręgowców i bezkręgowców i mają nadzieję go zrekonstruować. Studium zostało opublikowane w periodyku Cell.-
- Detlev Arendt
- Raju Tomer
-
(i 6 więcej)
Oznaczone tagami:
-
Niektórzy mieli możność obserwować, inni tylko czytać o zachowaniu myszy złapanych przez kota. Gryzonie w takiej sytuacji zamierają. Strach: udawać nieżywego, uciekać, czy atakować? Tak można w skrócie podsumować możliwe strategie w przypadku zagrożenia. Jak się okazuje, za wybór postępowania wobec strachu odpowiadają określone części mózgu i wydzielone grupy neuronów, którymi można sterować farmakologicznie. Zaawansowane badania przeprowadziła wspólna ekipa włoskich naukowców z European Molecular Biology Laboratory (Europejskie Laboratorium Biologii Molekularnej, EMBL) w Monterotondo oraz laboratorium firmy farmaceutycznej GlaxoSmithKline w Weronie. Nowoczesne podejście polegało na połączeniu technik modyfikacji genetycznej, farmakologii oraz obrazowanie pracy mózgu myszy przy pomocy funkcjonalnego rezonansu magnetycznego (fMRI). Głównym ośrodkiem mózgu reagującym na strach i uczucie zagrożenia jest ciało migdałowate. Działa ono niezależnie od innych struktur mózgu, pozwalając na błyskawiczną reakcję, zanim sytuacja zostanie przetworzona przez korę nową, czyli poddana świadomej analizie. Naukowcy zmodyfikowali genetycznie myszy tak, żeby komórki tzw. typu I w ciele migdałowatym jako reagowały na substancję chemiczną, blokującą ich działanie, w ten sposób można było farmakologicznie „wyłączać" przetwarzanie strachu przez badane gryzonie. Myszy uwarunkowano tak, aby odczuwały strach na określony sygnał dźwiękowy. Funkcjonowanie mózgu straszonych myszy badano przy pomocy fMRI. Doświadczenie przyniosło zaskakujące rezultaty, jak mówi Cornelius Gross, prowadzący projekt ze strony EMBL. Kiedy zahamowano działanie neuronów odpowiadających na strach, myszy przestały zastygać ze strachu - tego się spodziewano. Nie spodziewano się natomiast tego, że zamiast zastygać - zaczną reagować na bodziec dźwiękowy w odmienny sposób, np. agresją. Doświadczenie pokazało, jak podsumowuje dr Gross, że zablokowanie funkcji ciała migdałowatego wcale nie likwiduje uczucia strachu - to podważa powszechny pogląd na funkcję tego obszaru mózgu. Zamiast tego, zmienia się odruchowa strategia w obliczu zagrożenia - z biernej na czynną, aktywną. Funkcjonalny rezonans magnetyczny, w wersji dostosowanej do laboratoryjnych myszy przez Angelo Bifone'a z laboratorium GlaxoSmithKline, wykazał że zmianie strategii obronnej towarzyszy wzmożona aktywność kory mózgowej. Farmakologiczne zablokowanie aktywności kory przy pomocy atropiny z kolei przywróciło pierwotną reakcję na strach - zamieranie w bezruchu. Doświadczenie dowodzi, że ciało migdałowate steruje reakcją na strach nie poprzez pień mózgu, jak dotychczas sądzono, ale poprzez korę mózgową. Daje to uczonym zajmującym się funkcjonowaniem mózgu nowe zagadki i tematy do badań. Również ludzie reagują na strach według tych schematów: bierności lub agresji. Zrozumienie sposobu, w jaki wybierana jest strategia może mieć istotne znaczenie dla leczenia niektórych chorób, czy w adaptacji do sytuacji stresowych.
- 2 odpowiedzi