Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów 'CMV' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 3 wyniki

  1. Zakażenie niektórymi wirusami z rodziny Herpesviridae może zapewniać długotrwałą odporność na zakażenia bakteryjne - twierdzą naukowcy z Instytutu Trudeau. Potwierdzają tym samym prawdziwość wcześniejszych odkryć, lecz jednocześnie rzucają na sprawę nowe światło. Pierwsze doniesienia o ochronnym działaniu wirusów z rodziny Herpesviridae opublikowano w maju 2007 roku, a ich autorami byli badacze z Uniwersytetu Waszyngtońskiego kierowani przez dr. Herberta Virgina. Ku zaskoczeniu znacznej części środowiska naukowego stwierdzili oni wówczas, że przewlekła infekcja tymi patogenami zapewnia myszom dożywotnią odporność na zakażenia bakteryjne. Studium przeprowadzone przez badaczy z Uniwersytetu Waszyngtońskiego obejmowało dwa gatunki: mysiego wirusa cytomegalii (ang. murine cytomegalovirus - MCMV) oraz gammaherpesvirus 68, także zakażającego myszy. Oba są łudząco podobne do ludzkiego wirusa Epstaina-Barr (EBV), którego przewlekłym nosicielem jest niemal każdy człowiek na Ziemi i który może wywołać m.in. mononukleozę zakaźną oraz chłoniak Burkitta - jeden z rodzajów nowotworu układu limfatycznego. Rezultaty uzyskane przez zespół dr. Virgina były na tyle interesujące, że wzięli je pod lupę naukowcy z nowojorskiego Instytutu Trudeau, kierowani przez dr Marcię Blackman. Na podstawie własnego studium ustalili oni, że odpowiedź organizmu na wirusy z grupy Herpesviridae rzeczywiście pozwala na zablokowanie zakażeń różnymi rodzajami bakterii, lecz efekt ten utrzymuje się zaledwie przez kilka miesięcy. Rozbieżność uzyskanych informacji skłoniła naukowców z obu zespołów do wymiany listów, w których podzielili się oni wiedzą i opiniami na temat przedmiotu ich badań. Ich obszerny fragment został opublikowany na łamach czasopisma Viral Immunology. Najważniejszym wnioskiem z korespondencji wydaje się stwierdzenie, iż infekcja wirusowa, choć może powodować oczywiste konsekwencje dla zdrowia człowieka, niewątpliwie może pozwolić organizmowi człowieka na odparcie zakażeń wywołanych przez różne typy bakterii. Badacze z obu instytucji zgadzają się także, że konieczne jest przeprowadzenie analogicznych eksperymentów, tym razem z udziałem ludzi. Jeżeli potwierdzą one dotychczasowe przypuszczenia, już niedługo możemy stać się świadkami rozwoju eksperymentalnych szczepionek, które mogłyby skutecznie (choć przejściowo) chronić nas przed wieloma chorobami jednocześnie.
  2. Jedną z podstawowych strategii pozwalających wirusom na przeprowadzenie skutecznej infekcji jest przyśpieszanie metabolizmu komórek. Czy oznacza to, że podawanie leków zmniejszających aktywność komórek pozwoli na pokonanie wielu infekcji? Badacze z University of Rochester twierdzą, że jest to bardzo możliwe. Liczne wirusy, wśród nich te najistotniejsze z punktu widzenia medycyny, jak HIV czy wirus zapalenia wątroby typu B, używają tych samych związków do budowy własnych cząstek. Zdaniem angielskich badaczy może to oznaczać, że blokowanie syntezy tych składników może skutecznie powstrzymywać zakażenie. Prawdopodobnie najbardziej efektywnym celem takiej terapii byłoby tymczasowe blokowanie wytwarzania przez komórkę wytwarzania niektórych kwasów tłuszczowych, którymi liczne wirusy otaczają się pod koniec procesu namnażania. Dotychczas nie było jednak dokładnie wiadomo, w jaki sposób wirusy "zmuszają" komórkę do produkowania potrzebnych im substancji. Najnowsze badania, opublikowane przez czasopismo Nature Biotechnology, wykorzystywały techniki pozwalające na śledzenie zmian stężeń poszczególnych substancji wewnątrz komórki. Nowej dziedzinie badań nadano nawet własną nazwę "fluksomika" (od ang. flux - przepływ, w tym wypadku: przepływ materii i energii w komórce). Dla naukowców z Rochester szczególnie istotna była analiza tempa przemiany glukozy w kwasy tłuszczowe potrzebne do syntezy nowych cząstek wirusowych. Dzięki zastosowaniu nowych technik fluksomiki nasze badanie pokazuje, iż podczas infekcji wirus przejmuje kontrolę nad metabolizmem komórkowym i wywołuje, obok innych procesów, wyraźne zwiększenie syntezy kwasów tłuszczowych, tłumaczy badacz związany z projektem, dr Joshua Munger. Dodaje: odkryliśmy także, że jeśli zwalcza się to ożywienie metabolizmu kwasów tłuszczowych dzięki istniejącym lekom przeciw otyłości oraz substancjom spowalniającym metabolizm, spowalnia się replikację wirusów. Munger i jego koledzy opracowali technikę, która pozwala na ocenę zmian biochemicznych w komórce poddanej infekcji ludzkim wirusem cytomegalii (ang. Human Cytomegalovirus - HCMV). Mikroorganizm ten należy do najczęściej atakujących człowieka wirusów i może powodować poważne komplikacje, jeśli gospodarz cierpi na zaburzenia odporności. Co więcej, HCMV atakuje liczne typy komórek, co czyni go atrakcyjnym celem do badań. Aby zbadać "przepływ metaboliczny" zainfekowanych komórek, naukowcy zsyntetyzowali cząsteczki glukozy wyznakowane radioaktywnym izotopem. Są one zużywane przez komórkę identycznie ze "zwykłą" glukozą, lecz zastosowanie odpowiednich metod analitycznych pozwala śledzić ich los po pochłonięciu przez komórki. W tym celu zastosowano spektroskopię masową, pozwalającą na wykrywanie niewielkich zmian masy cząsteczek (wynikają one z faktu, iż izotop radioaktywny ma inną masę, niż jego stabilny odpowiednik) oraz chromatografię cieczową, polegającą na rozdzieleniu poszczególnych związków ze względu na łatwość, z jaką rozpuszczają się w określonym rozpuszczalniku i migrują w jego roztworze. Obie techniki umożliwiły zbadanie, do jakich związków zostały włączone izotopy pierwotnie wchodzące w skład glukozy. Pozwoliło to na zdefiniowanie zmian w metabolizmie, którym poddawane są komórki zaatakowane przez wirusa. Ponieważ synteza koniecznych dla mikroorganizmu kwasów tłuszczowych nie jest stale niezbędna dla ludzkich komórek, badacze postanowili ocenić, w jaki sposób blokada tej reakcji wpłynie na intensywność replikacji wirusa. Wykorzystano w tym celu leki obniżające poziom cholesterolu, blokujące dwa ważne enzymy odpowiedzialne także za syntezę kwasów tłuszczowych: karboksylazę acetylokoenzymu A oraz syntazę kwasów tłuszczowych. W pierwszym przypadku osiągnięto aż tysiąckrotne obniżenie szybkości replikacji wirusa, zaś drugi lek spowolnił ten proces do zaledwie 1% jego normalnej wydajności. Podobne wyniki uzyskano w przypadku innych wirusów otaczających się tłuszczową otoczką, takich jak wirus grypy. Wyniki eksperymentu bez wątpienia sa interesujące, lecz wymagają przeprowadzenia dalszych testów klinicznych. Dotychczasowe analizy nie wskazują na występowanie jakiegokolwiek niebezpieczeństwa związanego z terapią, lecz należy pamiętać, iż przeprowadzono je w warunkach laboratoryjnych na bardzo ograniczonej puli komórek. Istnieje jednak nadzieja, że nowa terapia znajdzie zastosowanie w leczeniu infekcji licznymi mikroorganizmami, w tym niektórymi z najgroźniejszych dla człowieka wirusów, jak HIV czy wirus zapalenia wątroby typu B.
  3. Specjalny komputerowy algorytm pomógł w odkryciu triku, który stosuje jeden z wirusów w celu zamaskowania własnej obecności w organizmie. Opracowana przez izraelską doktorantkę Naamę Elefant metoda ma szansę stać się ważnym narzędziem, którego zastosowanie ułatwi zrozumienie interakcji pomiędzy wirusem i jego ofiarą. Obiektem badań pani Elefant, absolwentki studiów medycznych z niewątpliwym talentem informatycznym, były geny kodujące tzw. mikroRNA (miRNA). Są to krótkie nici kwasu rybonukleinowego (RNA), które mają zdolność do tzw. interferencji, czyli zakłócania produkcji białek przez komórkę. W naturalnych warunkach produkcja miRNA jest dla komórek niezbędna i pomaga im w rozwoju oraz utrzymaniu równowagi fizjologicznej, lecz manipulowanie tym procesem przez wirusa może zaburzyć naturalne procesy komórkowe i "zmusić" organizm do działania na korzyść intruza. W ramach eksperymentu izraelska badaczka analizowała sekwencję genomu ludzkiego wirusa cytomegalii (HCMV, od ang. Human Cytomegalovirus) i porównywała ją z sekwencją ludzkich genów przy uwzględnieniu wielu innych parametrów, takich jak np. konfiguracja przestrzenna powstających cząsteczek RNA. Aby umożliwić wykonanie tak złożonej analizy, pani Elefant stworzyła samodzielnie program komputerowy specjalny program, który nazwała RepTar, a następnie - w oparciu o dostępne dane na temat genów HCMV oraz ludzkich - poleciła mu poszukiwanie wspólnych sekwencji w genach obu gatunków. Analiza z użyciem RepTar wykazała, że wirus cytomegalii produkuje miRNA zdolne do znacznego obniżenia aktywności genów kodujących cząsteczki tzw. pierwszej klasy głównego układu zgodności tkankowej (MHC - od ang. Main Histocompatibility Complex). Są to struktury białkowe, których zadaniem jest prezentowanie na powierzchni komórki fragmentów protein znajdujących się w jej wnętrzu. Zahamowanie aktywności syntezy MHC oznacza, że komórka nie jest w stanie "poinformować" układu odpornościowego o obecności w jej wnętrzu białek wirusowych, przez co niemożliwa jest skuteczna reakcja na infekcję. Aby uwiarygodnić wyniki, przeprowadzono dodatkowe doświadczenie, tym razem ną żywych komórkach zainfekowanych wirusem. Wyniki eksperymentu potwierdziły przewidywania wszechstronnie utalentowanej lekarki - zaatakowane komórki rzeczywiście wykazywały znacznie obniżoną produkcję cząsteczek układu zgodności tkankowej. Pani Elefant jest pierwszym naukowcem, któremu udało się udowodnić fakt syntezy miRNA przez wirusy. Odkrycie to jest niezwykle ważne, gdyż może mieć znaczący wpływ na prace nad terapiami zwalczającymi nieuleczalne dziś choroby. Gdyby, na przykład, udało się utrzymać prawidłowy poziom produkcji MHC przez zaatakowane komórki, organizm miałby znacznie większe szanse na samodzielne zwalczenie infekcji. Oczywiście, istnieje wysokie prawdopodobieństwo, że analogiczne procesy zachodzą także w przypadku innych zakażeń (niekoniecznie wirusowych), lecz wymaga to dalszych badań. Wysiłki młodej lekarki zostały docenione przez rodaków, którzy przyznali jej Nagrodę Barenholza - wyróżnienie dla wybitnych naukowców narodowości izraelskiej. Wyniki jej badań opublikowano w prestiżowym czasopiśmie Science.
×
×
  • Dodaj nową pozycję...