Znajdź zawartość
Wyświetlanie wyników dla tagów ' zima' .
Znaleziono 4 wyniki
-
Bakterie wykorzystują swój wewnętrzny zegar biologiczny, by przygotować się na zmianę pór roku. Odkrycie, dokonane przez naukowców z John Innes Centre, może mieć olbrzymie znaczenie dla zrozumienia roli rytmu dobowego w dostosowywaniu się do zmian klimatu. Nie tylko u bakterii, ale u wielu innych organizmów. Naukowcy prowadzili swoje eksperymenty na cyjanobakteriach. Organizmy trzymano w stałej temperaturze, a za pomocą oświetlenia symulowano długość dnia i nocy. Część cyjanobakterii doświadczyła krótkich dni (8 godzin światła i 16 godzin ciemności), część była trzymana w warunkach takiej samej długości dnia i nocy, a na części symulowano długie dni i krótkie noce. Następnie szalki laboratoryjne włożono na 2 godziny do lodu, a po tym czasie zbadano, ile bakterii przeżyło niskie temperatury. Okazało się, że na tych szalkach, na których bakterie doświadczały krótkich dni i długich nocy, przeżywalność wyniosła 75%, czyli nawet 3-krotnie więcej niż na pozostałych szalkach. Co ciekawe, jeden symulowany krótki dzień nie wystarczył, by cyjanobakterie nabrały odporności na zimno. Potrzebnych było kilka takich dni, optymalnie 6–8, by mikroorganizmy zdążyły się odpowiednio przygotować. Naukowcy potwierdzili, że decydującą rolę odgrywa tutaj zegar biologiczny, gdyż po usunięciu genów odpowiedzialnych za jego działanie przeżywalność bakterii w lodzie była identyczna, bez względu na symulowaną długość długość dnia, jakiej zostały poddane. To pokazuje, że w naturze bakterie wykorzystują wewnętrzny zegar do mierzenia długości dnia i gdy liczba krótkich dni osiąga pewną wartość – jak ma to miejsce jesienią – bakterie przełączają się w inny stan fizjologiczny, oczekując nadejścia zimowych warunków, mówi główna autorka badań, doktor Luisa Jabbur. O istnieniu zegara biologicznego u bakterii wiedzieliśmy już wcześniej. Teraz przeprowadzono pierwsze badania dowodzące, że mikroorganizmy wykorzystują go do przygotowania się na zmiany pór roku. Odkrycie otwiera też nowe pola badawcze. Cyjanobakterie żyją bowiem 6–24 godzin. Powstaje więc pytanie, w jaki sposób tego typu organizm wyewoluował mechanizm przewidujący zmiany pór roku i jak z niego korzysta. Wygląda na to, że przekazują one kolejnym pokoleniom informacje, że dni stają się coraz krótsze i trzeba coś z tym zrobić, mówi Jabbur. Uczona wraz z zespołem prowadzi badania nad fotoperiodyzmem, czyli fizjologiczną reakcją organizmu na zmianę proporcji okresów ciemności i światła. Wykorzystuje szybko namnażające się cyjanobakterie w nadziei, że zdobyta w ten sposób wiedza przyda się do zrozumienia, jak fotoperiodyzm może ewoluować w obliczu zmian klimatu, szczególnie w odniesieniu do najważniejszych roślin uprawnych. Niezwykle istotnym elementem tych badań jest próba zrozumienia mechanizmów pamięci molekularnej, które pozwalają przekazywać istotne informacje pomiędzy pokoleniami. « powrót do artykułu
-
- cyjanobakteria
- zegar biologiczny
-
(i 3 więcej)
Oznaczone tagami:
-
Tanio i toksycznie. Czy możemy poradzić sobie bez soli drogowej?
KopalniaWiedzy.pl dodał temat w dziale Ciekawostki
Każdej zimy na polskie drogi wysypuje się setki tysięcy ton soli drogowej. Ile dokładnie? Trudno powiedzieć. Dość wspomnieć, że Generalna Dyrekcja Dróg Krajowych i Autostrad szacuje, że obecnej zimy może zużyć około 500 000 ton soli drogowej, 3400 ton chlorku wapnia i 31 000 materiałów uszorstniających. A trzeba pamiętać, że GDDKiA zarządza zaledwie około 4% polskich dróg. Oczywiście musimy uwzględnić też i fakt, że są to drogi, które muszą być utrzymane w najlepszym stanie. O tym, co wolno sypać decyduje Rozporządzenie Ministra Srodowiska w sprawie rodzajów i warunków stosowania środków, jakie mogą być używane na drogach publicznych oraz ulicach i placach (Dz.U. 2005 nr 230 poz 1960). Dopuszcza ono stosowanie środków niechemicznych (piasek oraz kruszywo naturalne lub sztuczne) i środków chemicznych (chlorek sodu, chlorek magnezu oraz chlorek wapnia) oraz ich mieszanin. I to wszystko. A z nich, jak widzimy na co dzień, najpopularniejszy jest właśnie chlorek sodu (NaCl). Sól łatwo jest pozyskać, można ją stosować zarówno w postaci sypkiej, solanki oraz soli zwilżonej. Bardzo szybko i skutecznie doprowadza do topnienia śniegu i lodu, a ponadto obniża temperaturę zamarzania roztworu wodnego, w którym się znajduje, więc chroni przed gołoledzią. To szczególnie ważne w takich krajach jak Polska, gdzie w ciągu doby temperatura może nawet kilkukrotnie przechodzić przez punkt zamarzania. Sól jest skuteczna do -9 stopni Celsjusza. Wymieniony w rozporządzeniu chlorek magnezu świetnie zapobiega oblodzeniom. Działa do temperatury -15 stopni, a jego 1 kilogram zastępuje 10 kg soli. Jest jednak silnie higroskopijny, zatem łatwo chłonie wilgoć, więc jest trudny w przechowywaniu i transporcie. Podobnie zresztą jak chlorek wapnia, który za to działa skutecznie do -32 stopni Celsjusza. Chlorek magnezu i chlorek wapnia są jednak droższe od soli drogowej, trudniej jest też je przechowywać i stosować, co wiąże się z dodatkowymi kosztami. Dlatego też sypiemy na drogi olbrzymie ilości NaCl. Bo jest taniej. Jednak czy na pewno? Gdy w 2009 roku w Poznaniu w czasie zimy zużyto 3200 ton soli, miasto wydało na utrzymanie zieleni miejskiej 0,5 mln zł. Dwa lata później użyto 7400 ton soli, a wydatki na odtworzenie zieleni wyniosły już 2 miliony złotych. Sama sól jest tania, łatwa w użyciu i przechowywaniu. Jednak powoduje olbrzymie szkody, a ich usuwanie wiąże się z kosztami. Każdy z nas, chodząc po mieście w czasie zimy, widział biały osad na butach. To sól, która uszkadza nasze obuwie i ubranie. Cierpią też psy i koty, gdyż najmniejsza rana w kontakcie z solą wywołuje ból. Sól powoduje też podrażnienia łap, przez co rozwijają się zakażenia bakteryjna i drożdżakowe. NaCl wywołuje korozję samochodów i całej okolicznej infrastruktury. Uszkodzeniu ulegają ogrodzenia, słupki, znaki drogowe. Sól przyspiesza reakcje chemiczne prowadzące do pojawienia się rdzy. A im jest jej więcej, tym większe prawdopodobieństwo poważnych zniszczeń. A skoro samochód może ulec uszkodzeniu tylko dlatego, że jedzie po drodze wysypanej solą, łatwo wyobrazić sobie, jakie zniszczenia czyni sól w infrastrukturze. Pod jej wpływem osłabieniu ulega integralność materiałów konstrukcyjnych. Może nawet osłabiać beton. A wszędzie tam, gdzie przez wysypane solą drogi przechodzą linie kolejowe czy tramwajowe, dochodzi do korozji. Sól drogowa trafia też do zasobów wody pitnej, co stanowi problem dla osób, które z przyczyn zdrowotnych muszą ograniczać ilość soli w diecie. Jednak największe spustoszenie sól powoduje w środowisku przyrodniczym. Sypiemy ją przez kilka miesięcy w roku, ale negatywne skutki tych działań odczuwane są przez cały rok. My już zdążymy zapomnieć o zimie, ale setki tysięcy ton wysypanej soli znajduje się w glebie i wodzie. I każdego roku dosypujemy kolejną jej porcję. Środowisko jest przez nią permanentnie zatrute. Sól drogowa stanowi olbrzymie zagrożenie dla słodkowodnych roślin i zwierząt. Są one przystosowane do życia w środowisku o niskim zasoleniu. Gdy się ono zwiększa ryby i inne stworzenia mają problemy z utrzymaniem podstawowych funkcji biologicznych. Aby je utrzymać, muszą wydatkować energię, pozostaje im więc jej mniej na rozwój i reprodukcję. Wiadomo na przykład, że zwiększenie zasolenia wód słodkich prowadzi do zmniejszenia masy jaj żyjących tam zwierząt i spowalnia ich wzrost. Naturalne stężenie chlorków to 1-10 mg/l, jednak gdy stosowana jest sól drogowa gwałtownie ono rośnie. Na terenach podmokłych może sięgnąć powyżej 1000 mg/l, co oznacza ostrą toksyczność dla organizmów. Jednak już kilkukrotnie niższe stężenie, na poziomie 240 mg/l, gdy oddziałuje przez dłuższy czas jest bardzo szkodliwe dla 10% gatunków wodnych. Co więcej, w Polsce powszechnie do soli drogowej dodaje się przeciwzbrylający żelazocyjnek Pod wpływem promieni słonecznych oraz niektórych bakterii są z niego uwalniane toksyczne dla ludzi i zwierząt jony cyjanku. Na oddziaływanie soli drogowej szczególnie narażone są płazy mieszkające w przydrożnych rowach i łąkach. Sól powoduje u nich deformacje kręgosłupa, torbiele, brak kończyn. W rzekach czy jeziorach znajdujących się w pobliżu dróg negatywne skutki stosowania soli odczuwają przede wszystkim ryby. U nich sól wywołuje zaburzenia wzrostu, układu krążenia, obrzęki, zakłóca rozwój młodych i przyczynia się do wymierania zwierząt. Ponadto sól wpływa na zmianę gęstości wody, a tym samym zaburza jej mieszanie się. Woda zawierająca sól jest gęstsza, spływając z drogi do zbiornika wodnego trafia do głębszych warstw, przez co utrudnia mieszanie się wody i może prowadzić do szkodliwych dla organizmów wodnych deficytów tlenu. Kolejny problem stwarzają sinice, którym sól tak naprawdę pomaga. Naukowcy z PAN zauważyli, że zooplankton zrzuca na dno zbiorników jaja, z których wiosną następuje wylęg. Jednak w obecności soli zdolność do wylęgu wielu organizmów jest niższa, więc i zooplanktonu, który zjada sinice, jest mniej. Ponadto sinice i tak są bardziej odporne na niekorzystne działanie soli niż wiele innych organizmów. Połączenie tych dwóch czynników powoduje, że zmniejsza się liczba organizmów żywiących się sinicami oraz konkurujących z nimi o pożywienie. Sinicom w to graj. Dlatego wieloletnie stosowanie soli drogowej wiąże się często z intensywnymi, niejednokrotnie toksycznymi, zakwitami sinic w zbiornikach wodnych. Ofiarą soli padają również rośliny. Tam, gdzie jest ona stosowana do odladzania jezdni u występujących w pobliżu roślin obserwuje się zahamowanie wzrostu oraz zmniejszenie rozmiarów liści i korzeni. Zasolenie ogranicza roślinom dostęp do wody, co negatywnie wpływa na wszystkie ich procesy życiowe. Dochodzi do redukcji chlorofilu i zaburzeń fotosyntezy. Prowadzi też do wzrostu stężenia metali ciężkich w glebie. Przez nagromadzenie soli dochodzi do wymywania z gleby fosforu, potasu czy wapnia, a przeprowadzone badania pokazują, że z jej powodu usycha co najmniej 15% przydrożnych drzew. Mimo swoich licznych wad sól drogowa jest wciąż używana. Jest bowiem środkiem skutecznym, łatwym w stosowaniu i przechowywaniu oraz tanim, ale tanim dlatego, że nie bierzemy pod uwagę strat przez nią powodowanych. Co zamiast soli? Przez wiele ostatnich dekad w różnych miejscach na świecie testowano alternatywy dla soli drogowej. Wiemy na przykład, że octan wapniowo-magnezowy skutecznie działa do temperatury -5 stopni Celsjusza, jest nieszkodliwy dla środowiska i ma słabsze działanie korozyjne niż sól drogowa. Jest od niej jednak kilkukrotnie droższy, ma niższą gęstość i składa się z małych cząstek, przez co jest łatwo zdmuchiwany z jezdni i podczas przeładunku. Świetną alternatywą dla NaCl mogłyby być sole kwasu lewulinowego, wytwarzane z ziaren sorgo. Są nieszkodliwe dla roślin i zwierząt, mało korozyjne i działają skutecznie nawet do -12 stopni. Problemem jest jednak wysoki koszt ich produkcji. Prowadzone są i były próby np. z mieszaninami zawierającymi sok z buraków cukrowych czy ziemniaków. Całkiem dobrze się one sprawdzają, jednak tutaj pojawia się inny problem. Przy ich stosowaniu, a szczególnie jeśli miałyby być zastosowane na szeroką skalę, dojdzie do wprowadzenia do środowiska olbrzymich ilości fosforu czy azotu. To z kolei będzie prowadziło do eutrofizacji zbiorników wodnych i np. coraz częstszych zakwitów sinic. Dlatego też i naukowcy i ekolodzy ostrzegają przed hurraoptymistycznymi próbami stosowania metod alternatywnych. Oraz przed środkami reklamowanymi jako bezpieczne dla roślin i zwierząt oraz nie powodującymi korozji. Często nie zawierają one bowiem pełnych informacji np. o ich wpływie na środowisko wodne. Nauczeni negatywnymi skutkami używania soli drogowej musimy być teraz mądrzejsi i ostrożnie rozważać stosowanie ewentualnych alternatyw. W ostatnim czasie głośno było o fusach z kawy. Ten podpatrzony we Lwowie pomysł testuje się na krakowskich Plantach, a badania skutków ich stosowania zlecono naukowcom z Wydziału Leśnego Uniwersytetu Rolniczego. Na razie wyniki napawają optymizmem. Nie stwierdzono, by fusy szkodziły glebie i osłabiały jej aktywność mikrobiologiczną. To jednak dopiero początek, a naukowcy i ekolodzy podchodzą do nowej metody ostrożnie. Obawiają się wprowadzania do środowiska substancji, o których wpływie niewiele wiemy. Tym bardziej, że wpływ fusów na glebę i organizmy może być różny. Stosunek węgiel/azot w fusach jest większy niż w środowiskach mikroorganizmów glebowych. Ponadto zawierają one fenole, które mogą być toksyczne dla mikroorganizmów i roślin, ale jednocześnie są naturalnymi pestycydami i herbicydami. Wcześniejsze badania wskazują, że kompostowane fusy z kawy pomagają niektórym roślinom, jednak nie wiemy, czy tak samo działają fusy, których wcześniej nie poddano kompostowaniu. Wiadomo, że obniżają pH gleby, a niekompostowane hamują wzrost niektórych roślin uprawnych. Zaobserwowano też, że fusy kompostowane mogą pozytywnie wpływać na mikroorganizmy, ale zmniejszają przeżywalność dżdżownic, które odgrywają w glebie pozytywną rolę. Niewiele wiadomo również o wpływie fusów na środowisko wodne. Na ostateczną ocenę efektywności krakowskiego eksperymentu z fusami przyjdzie nam z pewnością jeszcze poczekać, jednak niezależnie od jego wyników już teraz możemy stwierdzić, że fusy nie staną się realną alternatywą dla soli drogowej. Skąd bowiem wziąć setki tysięcy ton fusów w sezonie zimowym? Sól z nami pozostanie Wygląda na to, że obecnie dla niezwykle szkodliwej soli drogowej nie ma jednej alternatywy. Na szeroką skalę można jedynie zastosować piasek lub kruszywa. Zwiększają one przyczepność do powierzchni, ale nie zapobiegają gołoledzi, która w naszym klimacie jest poważnym problemem. Ponadto piaskarki poruszają się znacznie wolniej niż solarki i muszą częściej wracać do bazy. Spływający zaś z dróg piasek zatyka kanalizacje, zasypuje rowy, wiosną trzeba z poboczy usuwać olbrzymie ilości piasku czy kruszywa. O w przypadku autostrad i dróg szybkiego ruchu nie istnieje obecnie żadna realna alternatywa dla soli drogowej, to już miasta – przynajmniej częściowo – mogą stosować inne rozwiązania. Tak jak w Krakowie, gdzie zakaz używania soli obowiązuje na należących do miasta terenach zielonych, a na terenie Starego Miasta stosuje się wyłącznie chlorek wapnia i piasek. Możliwe jest łączenie wielu różnych metod radzenia sobie ze śliskimi nawierzchniami. Na świecie używane są bardziej szorstkie materiały do budowy chodników, stosuje się podgrzewanie chodników czy parkingów, w wielu miejscach poradzić sobie można za pomocą ręcznego odśnieżania, miejscami można zastosować piasek czy kruszywo oraz droższe i mniej szkodliwe alternatywy dla soli drogowej. Łączenie takich metod, chociaż czasem niewygodne i pracochłonne, pozwala na znaczne zmniejszenie ilości niezwykle szkodliwej soli wysypywanej na drogi i chodniki. Jednak nie eliminuje całkowicie potrzeby jej użycia. Zatem sól drogowa jeszcze na długo z nami pozostanie. Jest bowiem skuteczna, tania i łatwa w użyciu. A o prawdziwych kosztach jej stosowania wolimy nie myśleć. « powrót do artykułu-
- sól drogowa
- zima
-
(i 3 więcej)
Oznaczone tagami:
-
Archeolodzy pracujący na Ness of Brodgar na Orkadach szukają ochotników, którzy pomogą zabezpieczyć neolityczne stanowisko przed zimą. Zadanie nie należy do łatwych, bo folią trzeba zakryć obszar o powierzchni 750 m2; by materiał nie został zerwany przez wiatr, trzeba go przycisnąć 500 starymi oponami. Specjaliści przypominają, że w poprzednich latach powierzchnia do zakrycia była 3-krotnie większa. Zabezpieczanie stanowiska przed wietrzną zimą Do następnej środy (11 sierpnia) sezon wykopaliskowy powinien się zakończyć. W związku z tym do wolontariuszy wystosowano apel z pytaniem o wolny czas w czwartek (12 sierpnia) lub piątek (13 sierpnia). Jeśli masz kilka wolnych godzin albo dni, przyjdź na stanowisko o 9 rano. Sugerujemy, by włożyć stare ubrania, a także wodoodporne, porządne obuwie. Zadanie do wykonania jest trudne, ale przyświeca mu wyższy cel, bo prowadzone działania pozwalają zabezpieczyć stanowisko przed zimowymi warunkami na Orkadach. Opony pochodzą z lokalnych warsztatów. Oczywiście, uzyskano pozwolenie Szkockiej Agencji Ochrony Środowiska na ich wykorzystanie. Jak tłumaczy Sigurd Towrie z Instytutu Archeologii University of the Highlands and Islands (UHI), opony spełniają 2 funkcje. Utrzymują w miejscu folię, która przykrywa wykopy i do pewnego stopnia stanowią podporę dla delikatniejszych rejonów. Większość kamienia wykorzystanego do budowy w neolicie rozwarstwia się przy wystawieniu na oddziaływanie żywiołów przez dłuższy czas. Trzeba więc zakryć kamień, a także krawędzie wykopów i podłogi budynków. W okolicach szczególnie podatnych na zniszczenie używa się worków z piaskiem. Ness of Brodgar W 2002 r. podczas badań geofizycznych natrafiono na ślady kamiennych konstrukcji przykrytych cienką warstwą ziemi. Po odkryciu tzw. Structure One przeprowadzono pomiary oporu elektrycznego gruntu. W 2004 r. wykonano 8 wykopów sondażowych. Z biegiem czasu stwierdzono, że to pozostałości dużego - otoczonego murem - neolitycznego kompleksu; w filmie z początku br. dyrektor Ness of Brodgar Nick Card zaznaczył, że dotąd odsłonięto mniej niż 10%. Stanowisko było wykorzystywane od ok. 3500 r. p.n.e do 2300 r. p.n.e. W tym czasie zachodziły tu spore zmiany, dotyczące m.in. stylów architektonicznych, które bez wątpienia odzwierciedlały zmiany w sposobie wykorzystania miejsca i dynamice neolitycznego społeczeństwa. Kompleks wypełnia wąski pas ziemi, który rozdziela dwa jeziora na wyspie Mainland (Loch of Stenness i Loch of Harray). Co ważne, leży on w połowie drogi między skupiskami megalitów - kamiennym kręgiem w Brodgar i stojącymi kamieniami ze Stenness. Nim odkryto Ness of Brodgar, cała okolica trafiła w 1999 r. na Listę Światowego Dziedzictwa UNESCO jako Serce Neolitycznych Orkadów. Z osią czasu stanowiska, na którym od lat prowadzone są systematyczne wykopaliska, można się zapoznać na stronie projektu. A oto dzisiejszy pogląd na jego historię czy techniki wykonania/zdobywania materiału (Ness of Brodgar: as it stands, Nick Card): « powrót do artykułu
- 2 odpowiedzi
-
- Ness of Brodgar
- stanowisko
-
(i 5 więcej)
Oznaczone tagami:
-
Wyjście z łóżka w ciemny zimowy poranek jest dla wielu nie lada wyzwaniem. Nie ma jednak co robić sobie z tego powodu wyrzutów. Neurobiolodzy z Northwestern University odkryli właśnie mechanizm wskazujący, że zachowanie takie ma biologiczne podstawy. Naukowcy zauważyli otóż, że muszki owocówki posiadają rodzaj termometru, który przekazuje informacje o temperaturze z czułków zwierzęcia do bardziej rozwiniętych części mózgu. Wykazali też, że gdy jest ciemno i zimno sygnały te tłumią działanie neuronów odpowiedzialnych za przebudzenie się i aktywność, a tłumienie to jest najsilniejsze o poranku. To pomaga wyjaśnić dlaczego, zarówno w przypadku muszek owocówek jak i ludzi, tak trudno jest obudzić się w zimie. Badając zachowanie muszek możemy lepiej zrozumieć jak i dlaczego temperatury są tak ważne dla regulacji snu, mówi profesor Marco Gallio z Winberg College of Arts and Sciences. W artykule opublikowanym na łamach Current Biology autorzy badań jako pierwsi opisali receptory „absolutnego zimna” znajdujące się w czułkach muszki. Reagują one wyłącznie na temperatury poniżej strefy komfortu termicznego zwierzęcia, czyli poniżej 25 stopni Celsjusza. Po zidentyfikowaniu tych neuronów uczeni zbadali ich interakcję z mózgiem. Okazało się, że głównym odbiorcą przesyłanych przez nie informacji jest mała grupa neuronów mózgu, która jest częścią większego obszaru odpowiedzialnego za kontrolę rytmu aktywności i snu. Gdy obecne w czułkach receptory zimna zostają aktywowane, wówczas komórki w mózgu, które zwykle są aktywowane przez światło, pozostają uśpione. Odczuwanie temperatury to jeden z najważniejszych stymulantów. Podstawy jego działania, jakie znaleźliśmy u owocówki, mogą być identyczne u ludzi. Niezależnie bowiem od tego, czy mamy do czynienia z człowiekiem czy z muszką, narządy zmysłów mają do rozwiązania te same problemy i często jest to robione w ten sam sposób, dodaje Gallio. « powrót do artykułu
- 1 odpowiedź
-
- temperatura
- sen
-
(i 5 więcej)
Oznaczone tagami: