Znajdź zawartość
Wyświetlanie wyników dla tagów ' wielkość' .
Znaleziono 5 wyników
-
Wydawałoby się, że zdolność do wytwarzania nasion, owoców czy orzechów będzie rosła wraz ze wzrostem drzew. Badania prowadzone przez naukowców z 13 krajów z całego świata nie potwierdzają jednak tej hipotezy. Naukowcy zbadali prawie 600 gatunków drzew. Okazało się, że u około 80 proc. z nich płodność osiągała wartość szczytową, gdy drzewa były umiarkowanej wielkości. Potem zaczynała spadać. Pozostałe 20 proc. gatunków niekoniecznie posiada sekretny „eliksir młodości” – zaznaczają naukowcy. I dodają, że gatunki te prawdopodobnie również doświadczają spadku płodności w pewnym wieku. Jednak, aby to stwierdzić, nie ma na razie wystarczająco wielu danych na temat starszych, większych drzew z tej grupy gatunków. Publikacja autorstwa 59 badaczy z 13 krajów (Chile, Włoch, Kanady, Polski, Francji, Hiszpanii, Szwajcarii, Japonii, Słowenii, Niemiec, Panamy, Portoryko i USA) ukazała się niedawno na łamach Proceedings of the National Academy of Sciences of the United States of America. Jednymi z autorów są dr hab. Michał Bogdziewicz z Wydziału Biologii UAM w Poznaniu, dr hab Magdalena Żywiec i Łukasz Piechnik z Instytutu Botaniki im. Władysława Szafera PAN w Krakowie oraz dr Mateusz Ledwon z Instytutu Systematyki i Ewolucji Zwierząt PAN w Krakowie. Owoce i orzechy drzew stanowią 3 proc. diety człowieka. Są również ważne dla wielu ptaków i małych ssaków, a nasiona drzew są niezbędne do regeneracji lasów. Aby skutecznie zarządzać tymi zasobami i je chronić, musimy wiedzieć, czy prawdopodobne jest wystąpienie spadku płodności oraz w jakim rozmiarze lub wieku może się taki spadek pojawić – mówi kierujący badaniami, dr Tong Qiu z Nicholas School of the Environment na Duke University (USA), cytowany w informacji prasowej związanej z publikacją, przesłanej PAP przez UAM. Odpowiedź na to pozornie proste pytanie pozostawała jednak dotychczas w sferze domysłów. Z jednej strony jest niezwykle nieprawdopodobne, aby płodność drzew wzrastała w nieskończoność wraz z wiekiem i wielkością, biorąc pod uwagę to, co wiemy o starzeniu się lub pogarszaniu się funkcji fizjologicznych związanym z wiekiem u ludzi i innych organizmów wielokomórkowych – zauważa James S. Clark, profesor nauk o środowisku z Nicholas School of the Environment na Duke University w Durham (USA). Z drugiej strony, ściśle mówiąc, nie było jednoznacznych dowodów, aby to obalić – zauważa dr hab. Michał Bogdziewicz, biolog z Uniwersytetu im. Adama Mickiewicza w Poznaniu, cytowany w informacji prasowej. Clark zwraca uwagę, że wiele upraw drzew owocowych jest wymienianych co dwie lub trzy dekady, i że istnieją trudności w monitorowaniu produkcji nasion na drzewach rosnących poza uprawą. Właśnie dlatego większość dotychczasowych badań dotyczących płodności drzew opierała się na zestawach danych, które zawierały głównie młodsze drzewa, które są wciąż zbyt małe lub średnie. Nie mając wystarczających danych na temat produkcji nasion na późniejszych etapach rozwoju osobników naukowcy szacowali te liczby na podstawie średnich z wcześniejszych etapów. Problem polega na tym, że drzewa niekoniecznie produkują regularną liczbę nasion każdego roku, niezależnie od wielkości i wieku. Mogą występować ogromne różnice z roku na rok i pomiędzy drzewami – od zera nasion w jednym roku do milionów w następnym. Tak więc wykorzystanie średnich obserwacji z przeszłości do prognozowania przyszłej produkcji może prowadzić do sporych błędów – podkreślają naukowcy. Nowe badanie – jak informują jego autorzy – pozwala uniknąć tego problemu, gdyż zawiera syntezę danych dotyczących produkcji nasion dla 585 670 drzew z 597 gatunków monitorowanych za pośrednictwem sieci MASTIF (Masting Inference and Forecasting). Michał Bogdziewicz z UAM jest jednym z członków tej dynamicznie rozwijającej się grupy badawczej. W ramach stypendium badawczego Bekkera finansowanego przez NAWA przez najbliższe dwa lata będzie pracował w laboratorium Clarka - informuje UAM. Globalna baza danych stworzona przez sieć zawiera szczegółowe dane, obejmujące często wiele dziesięcioleci wstecz, a dotyczące rocznej produkcji nasion przez drzewa rosnące w ponad 500 różnych miejscach w Ameryce Północnej, Ameryce Południowej, Azji, Europie i Afryce. Nowe obserwacje można łatwo do bazy danych. Może to zrobić każdy. Dostęp do tak ogromnego repozytorium surowych danych umożliwił Qiu, Clarkowi i ich współpracownikom opracowanie skalibrowanego modelu, aby i dokładnie obliczyć długoterminową płodność drzew. Dla większości badanych przez nas gatunków, w tym ludzi, jedną z najbardziej podstawowych zmiennych, które mierzymy, jest wskaźnik urodzeń. Dla zwierząt często jest to proste – liczysz jaja w gnieździe lub szczenięta w miocie. Ale kiedy chodzi o drzewa, jest to trudniejsze. Bardzo trudno jest bezpośrednio obserwować, ile nasion jest produkowanych – wyobraźmy sobie liczenie wszystkich żołędzi na 100 letnim buku. Jak pokazuje to badanie, przybliżanie również nie działa. Potrzebny jest inny sposób. Nasz model może rozwiązać ten problem – powiedział Clark. « powrót do artykułu
-
Dotąd oszacowana była tylko długość kopalnego rekina megalodona. Autorzy nowych badań z Uniwersytetów w Bristolu i Swansea ujawnili jednak ostatnio rozmiary reszty ciała olbrzyma, w tym płetwy grzbietowej, która była tak duża, jak dorosły człowiek. Naukowcy podkreślają, że ludzie są zafascynowani określaniem gabarytów największych rekinów. W przypadku form kopalnych, kiedy specjaliści dysponują samymi zębami, nie jest to łatwe zadanie. W oparciu o skamieniałości zębów i dane dot. żarłacza białego wyliczono, że maksymalna długość całkowita megalodona wynosiła ok. 15-18 m (takie wyniki otrzymywali autorzy prac, które ukazały się od 1996 do 2019 r.). Był on więc ponad 2-krotnie dłuższy od żarłacza. Jack Cooper z Uniwersytetu w Bristolu i jego współpracownicy z Uniwersytetów w Bristolu i Swansea poszli o krok dalej i posłużyli się metodami matematycznymi, by określić rozmiary i proporcje kopalnego rekina. Bazowali przy tym na porównaniach do żyjących krewnych, wykazujących ekologiczne i fizjologiczne podobieństwa do megalodona. Projekt był nadzorowany przez ekspertkę od rekinów - dr Catalinę Pimiento z Uniwersytetu w Swansea i przez paleontologa z Bristolu - prof. Mike'a Bentona. Wyniki badań opublikowano w piśmie Scientific Reports. Zawsze byłem zafascynowany rekinami. Podczas licencjatu nurkowałem z żarłaczami białymi w RPA (chroniła mnie, oczywiście, metalowa klatka). [...] Rekiny są pięknymi i świetnie przystosowanymi zwierzętami i stanowią atrakcyjny obiekt badań - podkreśla Cooper. Projekt związany z megalodonem był marzeniem Coopera, lecz badanie zwierzęcia jako całości jest trudne, zważywszy, że tak naprawdę mamy tylko wiele izolowanych zębów. Wcześniej kopalny rekin - Otodus megalodon - był porównywany jedynie do żarłacza białego (Carcharodon carcharias), jednak zespół Coopera jako pierwszy rozszerzył tę analizę, by zawrzeć w niej aż 5 gatunków współczesnych rekinów: wspomnianego żarłacza białego, ostronosa atlantyckiego (Isurus oxyrinchus), ostronosa długopłetwego (Isurus paucus), lamnę dwustępkową (Lamna ditropis) i lamnę śledziową (Lamna nasus). Nim mogliśmy cokolwiek zrobić, musieliśmy stwierdzić, czy dorastając, rekiny te zmieniają proporcje. Gdyby były, na przykład, jak ludzie, w przypadku których dzieci mają duże głowy i krótkie nogi, mieliśmy pewne trudności z przewidywaniem dorosłych rozmiarów dla tak dużego wymarłego rekina - wyjaśnia prof. Benton. Byliśmy jednak zaskoczeni i odczuliśmy ulgę, gdy odkryliśmy, że w rzeczywistości młode wszystkich tych współczesnych drapieżnych rekinów rozpoczynają [życie] jako miniwersje dorosłych i nie zmieniają proporcji, gdy stają się większe. To zaś oznacza, że mogliśmy po prostu przyjąć krzywe wzrostu 5 współczesnych form i szacować ogólny pokrój podczas wzrostu, aż do osiągnięcia długości 16 metrów - dodaje Cooper. Wyniki sugerują, że 16-metrowy O. megalodon miał głowę o długości ok. 4,65 m, płetwę grzbietową o wysokości 1,62 cm i płetwę ogonową o szerokości (wysokości) 3,85 m. Długość płetw piersiowych także robiła wrażenie; oszacowano, że wynosiła co najmniej 3 metry. Rekonstrukcja rozmiarów części ciała megalodona stanowi ważny krok naprzód w kierunku zrozumienia fizjologii tego giganta. « powrót do artykułu
-
Czy urbanizacja napędza ewolucję trzmieli? Nowe badanie niemieckich naukowców sugeruje, że tak. Autorzy publikacji z pisma Evolutionary Applications dowodzą, że w miastach trzmiele są większe, a przez to bardziej produktywne. Różnice w gabarytach mogą zaś być spowodowane rosnącą fragmentacją habitatu w miastach. W ciągu ostatnich 200 lat habitat trzmieli i innych owadów bardzo się zmienił. Obecnie z mniejszym prawdopodobieństwem żyją one na obszarach wiejskich, a z większym są otoczone drogami i betonowymi ścianami. Życie w mieście może mieć dla trzmieli plusy i minusy. Z jednej strony ogrody i balkony, działki, ogrody botaniczne i miejskie parki stanowią bogate źródło pokarmu. Z drugiej strony miasta są znacząco cieplejsze niż okoliczne obszary wiejskie. A to może stanowić dla trzmieli wyzwanie - tłumaczy dr Panagiotis Theodorou z Uniwersytetu Marcina Lutra w Halle i Wittenberdze (MLU). Zespół biologów z MLU postanowił sprawdzić, czy urbanizacja wiąże się ze zmianami wielkości ciała trzmieli, a jeśli tak, to jak się to ma do ich zdolności zapylania. Naukowcy schwytali w 9 niemieckich miastach (Berlinie, Poczdamie, Brunszwiku, Getyndze, Jenie, Dreźnie, Lipsku, Chemnitz i Halle) i ich okolicach ponad 1800 trzmieli. Zapylanie we wszystkich lokalizacjach oceniali za pomocą doniczkowej koniczyny łąkowej (Trifolium pratense). Naukowcy skupili się na 3 gatunkach trzmieli: trzmielu kamienniku (Bombus lapidarius), trzmielu rudym (Bombus pascuorum) i trzmielu ziemnym (Bombus terrestris). Mierzyli wszystkie złapane osobniki i zliczali nasiona wyprodukowane przez koniczyny. Nasze wyniki pokazują, że w porównaniu do owadów wiejskich, trzmiele z bardziej pofragmentowanych miejskich habitatów były o ok. 4% większe - opowiada dr Antonella Soro. Wielkość ciała wiąże się z metabolizmem, wykorzystaniem przestrzeni czy rozprzestrzenieniem się. Większe trzmiele mogą lepiej widzieć, mają większy mózg, a także osiągają lepsze rezultaty w uczeniu i zapamiętywaniu. Są również rzadziej atakowane przez drapieżniki i mogą pokonywać większe odległości, co daje korzyści w pofragmentowanym miejskim habitacie, takim jak np. miejski. Dodatkowo większe trzmiele odwiedzają podczas jednego lotu więcej kwiatów i są w stanie osadzić na znamieniu więcej ziaren pyłku. Dzięki temu są lepszymi zapylaczami - podkreśla Soro. To może stanowić wyjaśnienie udokumentowanego przez badaczy dodatniego związku między rozmiarami ciała a zapylaniem. Zespół wskazuje na istotność dalszych badań nad odpowiedziami ewolucyjnymi pszczół na urbanizację. Dzięki temu będzie można poprawić działania urbanistyczne. « powrót do artykułu
-
Króliki lubią jeść rośliny z dużą ilością DNA (o większym genomie). Bezkręgowce, np. ślimaki, wykazują natomiast odwrotne preferencje. Jak tłumaczą naukowcy z Queen Mary University of London i Królewskich Ogrodów Botanicznych w Kew, na wybory pokarmowe roślinożerców wpływają różne czynniki, lecz rola spełniana przez wielkość genomu nie była dotąd dobrze poznana. Autorzy artykułu z pisma Proceedings of the Royal Society B uważają, że wielkość genomu powinna zostać wykorzystania do ulepszenia modeli ekologicznych, które pozwalają przewidzieć, jak społeczności roślinne będą reagować na zmianę ekologiczną (np. zmianę klimatu albo sposobu wykorzystania gruntu). Badanie przeprowadzono na łące położonej na zachód od Londynu, z której zwierzęta roślinożerne wykluczono na 8 lat. Później analizowano poletka, na których żerowały króliki albo bezkręgowce, np. owady i ślimaki. Okazało się, że rośliny reagowały różnie, w zależności od typu zwierzęcia. Generalnie wykazano, że w warunkach żerowania królików większość biomasy generowały gatunki roślin z niewielkim genomem. Dla odmiany na poletkach oddanych w posiadanie ślimaków i owadów gros biomasy generowały gatunki roślin z większym genomem. Wielkość genomu (ang. genome size, GS) oddziaływała też na cechy społeczności roślin, np. strategie konkurencyjne, ale wpływ ten różnił się także ze względu na typ roślinożerców i napływ składników odżywczych. Niewykluczone, że króliki wolą gatunki roślin z dużym genomem, bo są one bardziej odżywcze; genom rośliny jest przecież w końcu bogatym źródłem białek i kwasów nukleinowych. Bezkręgowce gustują w roślinach z małym genomem ze względu na większą dostępność. Brytyjczycy wyjaśniają, że wielkość genomu okrytozalążkowych (Angiospermae) jest bardzo różna: największy jest co najmniej 2400 razy większy od najmniejszego. Ma to wpływ na to, jak i gdzie te rośliny mogą żyć. Nowe studium pokazuje, że w zależności od ilości DNA w komórkach, poszczególne gatunki są też inaczej traktowane przez typy roślinożerców. « powrót do artykułu
-
- roślinożercy
- króliki
-
(i 6 więcej)
Oznaczone tagami:
-
Większe psy, mające większy mózg, wypadają w pomiarach niektórych rodzajów inteligencji lepiej, niż mniejsze psy o mniejszych mózgach, donoszą naukowcy z University of Arizona. Z badań, których opis znajdziemy na łamach Animal Cognition, psy z większymi mózgami wypadały lepiej w badaniach funkcji wykonawczych. To zestaw procesów poznawczych, które są niezbędne do kontrolowania i koordynacji innych procesów poznawczych i zachowań. Psy o większych mózgach mają przede wszystkim lepszą pamięć krótkoterminową i samokontrolę, niż małe psy. Nie wiemy jednak dlaczego rozmiary mózgu mogą mieć znaczenie w wypadku funkcji poznawczych. Obecnie myślimy o rozmiarach jako o wskazówce głębszych procesów. Może chodzi tutaj o liczbę neuronów, albo o sposób ich łączenia się. Nikt tego nie potrafi obecnie twierdzić, ale chcemy się tego dowiedzieć, mówi główny autor badań Daniel Horschler. Wydaje się jednak, że rozmiar psiego mózgu nie ma wpływu na każdy rodzaj inteligencji. Na przykład na podstawie wielkości mózgu nie można przewidywać, jak pies wypadnie w testach na inteligencję społeczną czy na rozumowanie. Wspomniane badania potwierdzają to, co wcześniej zauważono u naczelnych – rozmiar mózgu jest powiązany z funkcjami wykonawczymi, ale nie z innymi typami inteligencji. Dotychczasowe badania prowadzono przede wszystkim na naczelnych, nie byliśmy więc pewni, czy nie jest to unikatowy aspekt ewolucji mózgu naczelnych. Psy są świetnym podmiotem do testów, gdyż są bardzo zróżnicowane pod względem wielkości mózgu. Takiego zróżnicowania nie spotkamy u żadnego innego gatunku lądowego. Mamy tutaj psy od rozmiarów chihuahua po dogi niemieckie, mówi Horschler. Naukowcy wykorzystali dane dotyczące ponad 7000 psów czystych ras reprezentujących 74 rasy. Rozmiary mózgu ustalono na podstawie wzorca dla każdej z ras. Dane pochodziły z witryny Dognition.com, na której właściciele psów znajdą testy badające różne rodzaje inteligencji i gdzie umieszczają uzyskane wyniki. Te zaś są dostępne m.in. dla specjalistów. Pamięć krótkoterminowa była badana w ten sposób, że właściciel ukrywał pod jednym z dwóch kubków przekąskę. Pies widział, gdzie została ona schowana. Następnie po 60, 90, 120 i 150 sekundach pozwalano zwierzęciu zabrać smakołyk. Okazało się, że psy mniejszych ras miały więcej problemów z zapamiętaniem, gdzie jest przekąska. W ramach testu samokontroli właściciele kładli przekąskę przed psem i zabraniali mu jej ruszyć. Następnie albo obserwowali psa, albo zasłaniali oczy, albo odwracali się tyłem. Psy większych ras wytrzymywały dłużej zanim bez pozwolenia zjadły przekąskę. Horschler i jego zespół sprawdzali też, czy psy biorące udział w eksperymentach były wcześniej szkolone. Okazało się, że niezależnie od szkolenia, psy większych ras miały lepszą pamięć krótkotrwałą i lepszą samokontrolę. W przyszłości naukowcy chcą przeprowadzić testy porównujące zdolności poznawcze odmian poszczególnych ras. Będą na przykład porównywali pudla miniaturowego ze standardowym, znacznie większym pudlem. Bardzo interesuje mnie, jak ewoluowały funkcje poznawcze. Zaczynamy dopiero rozumieć, że rozmiar mózgu jest jakoś z nim powiązany. Zobaczymy, czy chodzi tutaj o samą wielkość, czy o coś innego, mówi Horschler. « powrót do artykułu