Znajdź zawartość
Wyświetlanie wyników dla tagów ' układ scalony' .
Znaleziono 15 wyników
-
Światło posiada niezwykle interesującą cechę. Jego fale o różnej długości nie wchodzą ze sobą w interakcje. Dzięki temu można jednocześnie przesyłać wiele strumieni danych. Podobnie, światło o różnej polaryzacji również nie wchodzi w interakcje. Zatem każda z polaryzacji mogłaby zostać wykorzystana jako niezależny kanał przesyłania i przechowywania danych, znakomicie zwiększając gęstość informacji. Naukowcy z Uniwersytetu Oksfordzkiego poinformowali właśnie o opracowaniu metody wykorzystania polaryzacji światła do zmaksymalizowania gęstości danych. Wszyscy wiemy, że przewaga fotoniki nad elektronika polega na tym, że światło przemieszcza się szybciej i jest bardziej funkcjonalne w szerokich zakresach. Naszym celem było wykorzystanie wszystkich zalet fotoniki połączonych z odpowiednim materiałem, dzięki czemu chcieliśmy uzyskać szybsze i gęstsze przetwarzanie informacji, mówi główny autor badań, doktorant June Sang Lee. Jego zespół, we współpracy z profesorem C. Davidem Wrightem z University of Exeter, opracował nanowłókno HAD (hybrydyzowane-aktywne-dielektryczne). Każde z nanowłókien wyróżnia się selektywną reakcją na konkretny kierunek polaryzacji, zatem możliwe jest jednoczesne przetwarzanie danych przenoszonych za pomocą różnych polaryzacji. Stało się to bazą do stworzenia pierwszego fotonicznego procesora wykorzystującego polaryzację światła. Szybkość obliczeniowa takiego procesora jest większa od procesora elektronicznego, gdyż poszczególne nanowókna są modulowane za pomocą nanosekundowych impulsów optycznych. Nowy układ może być ponad 300-krotnie bardziej wydajny niż współczesne procesory. To dopiero początek tego, co możemy osiągnąć w przyszłości, gdy uda się nam wykorzystać wszystkie stopnie swobody oferowane przez światło, w tym polaryzację. Dzięki temu uzyskamy niezwykły poziom równoległego przetwarzania danych. Nasze prace wciąż znajdują się na bardzo wczesnym etapie, dlatego też szacunki dotyczące prędkości pracy takiego układu wciąż wymagają eksperymentalnego potwierdzenia. Mamy jednak niezwykle ekscytujące pomysły łączenia elektroniki, materiałów nieliniowych i komputerów, komentuje profesor Harish Bhakaran, który od ponad 10 lat prowadzi prace nad wykorzystaniem światła w technologiach obliczeniowych. Ze szczegółami pracy można zapoznać się w artykule Polarisation-selective reconfigurability in hybridized-active-dielectric nanowires opublikowanym na łamach Science Advances. « powrót do artykułu
-
- fotonika
- polaryzacja
-
(i 2 więcej)
Oznaczone tagami:
-
Urządzenia elektroniczne pracują coraz szybciej i szybciej.Jednak w pewnym momencie dotrzemy do momentu, w którym prawa fizyki nie pozwolą na dalsze ich przyspieszanie. Naukowcy z Uniwersytetu Technologicznego w Wiedniu, Uniwersytetu Technologicznego w Grazu i Instytutu Optyki Kwantowej im. Maxa Plancka w Garching określili najkrótszą skalę czasową, w której mogą pracować urządzenia optoelektroniczne. Podzespoły elektroniczne pracują w określonych interwałach czasowych i z sygnałami o określonej długości. Procesy kwantowo-mechaniczne, które umożliwiają wygenerowanie sygnału, trwają przez pewien czas. I to właśnie ten czas ogranicza tempo generowania i transmisji sygnału. Jego właśnie udało się określić austriacko-niemieckiemu zespołowi. Naukowcy, chcąc dotrzeć do granic tempa konwersji pól elektrycznych w sygnał elektryczny, wykorzystali impulsy laserowe, czyli najbardziej precyzyjne i najszybsze dostępne nam pola elektromagnetyczne. O wynikach swoich badań poinformowali na łamach Nature Communications. Badaliśmy materiały, które początkowo w ogóle nie przewodzą prądu, mówi profesor Joachim Burgdörfer z Instytutu Fizyki Teoretycznej Uniwersytetu Technologicznego w Wiedniu. Materiały te oświetlaliśmy ultrakrótkimi impulsami lasera pracującego w ekstremalnym ultrafiolecie. Impulsy te przełączały wzbudzały elektrony, które wchodziły na wyższy poziom energetyczny i zaczynały się swobodnie przemieszczać. W ten sposób laser zamieniał na krótko nasz materiał w przewodnik. Gdy tylko w materiale pojawiały się takie swobodne elektrony, naukowcy z pomocą drugiego, nieco dłuższego impulsu laserowego, przesuwali je w konkretnym kierunku. W ten sposób dochodziło do przepływu prądu elektrycznego, który rejestrowano za pomocą elektrod po obu stronach materiału. Cały proces odbywał się w skali atto- i femtosekund. Przez długi czas uważano, że zjawiska te powstają natychmiast. Jednak obecnie dysponujemy narzędziami, które pozwalają nam je precyzyjnie badać, wyjaśnia profesor Christoph Lemell z Wiednia. Naukowcy mogli więc odpowiedzieć na pytanie, jak szybko materiał reaguje na impuls lasera, jak długo trwa generowanie sygnału i jak długo sygnał ten trwa. Eksperyment był jednak obarczony pewną dozą niepewności związaną ze zjawiskami kwantowymi. Żeby bowiem zwiększyć tempo, konieczne były ekstremalnie krótkie impulsy lasera, by maksymalnie często dochodziło do tworzenia się wolnych elektronów. Jednak wykorzystanie ultrakrótkich impulsów oznacza, że nie jesteśmy w stanie precyzyjnie zdefiniować ilości energii, jaka została przekazana elektronom. Możemy dokładnie powiedzieć, w którym momencie w czasie dochodziło do tworzenia się ładunków, ale nie mogliśmy jednocześnie określić, w jakim stanie energetycznym one były. Ciała stałe mają różne pasma przewodzenia i przy krótkich impulsach laserowych wiele z nich jest wypełnianych wolnymi ładunkami w tym samym czacie, dodaje Lemell. Elektrony reagują różnie na pole elektryczne, a reakcja ta zależy od tego, jak wiele energii przenoszą. Jeśli nie znamy dokładnie tej wartości, nie możemy precyzyjnie ich kontrolować i dochodzi do zaburzeń przepływu prądu. Szczególnie przy bardzo intensywnej pracy lasera. Okazuje się, że górna granica możliwości kontrolowania procesów optoelektronicznych wynosi około 1 petaherca, mówi Joachim Burgdörfer. To oczywiście nie oznacza, że będziemy kiedykolwiek w stanie wyprodukować układy komputerowe z zegarami pracującymi nieco poniżej petaherca. Realistyczne możliwości technologii są zwykle znacznie niższe niż granice fizyczne. Jednak mimo tego, że nie jesteśmy w stanie pokonać praw fizyki, badania nad limitami fizycznych możliwości pozwalają na ich analizowanie, lepsze zrozumienie i udoskonalanie technologii. « powrót do artykułu
- 1 odpowiedź
-
- układ scalony
- urządzenie elektroniczne
-
(i 3 więcej)
Oznaczone tagami:
-
Microsoft przyspiesza prace nad własnymi układami scalonymi
KopalniaWiedzy.pl dodał temat w dziale Technologia
Microsoft zatrudnił byłego projektanta układów scalonych Apple'a, , który wcześniej pracował też w firmach Arm i Intel, trafił do grupy kierowanej przez Raniego Borkara, zajmującej się rozwojem chmury Azure. Zatrudnienie Filippo wskazuje, że Microsoft chce przyspieszyć prace nad własnymi układami scalonymi dla serwerów tworzących oferowaną przez firmę chmurę. Koncern idzie zatem w ślady swoich największych rywali – Google'a i Amazona. Obecnie procesory do serwerów dla Azure są dostarczane przez Intela i AMD. Zatrudnienie Filippo już odbiło się na akcjach tych firm. Papiery Intela straciły 2% wartości, a AMD potaniały o 1,1%. Filippo rozpoczął pracę w Apple'u w 2019 roku. Wcześniej przez 10 lat był głównym projektantem układów w firmie ARM. A jeszcze wcześniej przez 5 lat pracował dla Intela. To niezwykle doświadczony inżynier. Właśnie jemu przypisuje się wzmocnienie pozycji układów ARM na rynku telefonów i innych urządzeń. Od niemal 2 lat wiadomo, że Microsoft pracuje nad własnymi procesorami dla serwerów i, być może, urządzeń Surface. Giganci IT coraz częściej starają się projektować własne układy scalone dla swoich urządzeń, a związane z pandemią problemy z podzespołami tylko przyspieszyły ten trend. « powrót do artykułu-
- Microsoft
- Mark Philippo
-
(i 4 więcej)
Oznaczone tagami:
-
Po USA Japonia, TSMC zapowiada budowę kolejnej fabryki
KopalniaWiedzy.pl dodał temat w dziale Technologia
Firma Taiwan Semiconductor Manufacturing Co. (TSMC), największy na świecie producent układów scalonych na zlecenie, poinformowała, że wybuduje fabrykę półprzewodników w Japonii. To już druga tego typu zapowiedź w ostatnim czasie. Przed kilkoma miesiącami TSMC ogłosiła, że zainwestuje 12 miliardów dolarów w budowę nowej fabryki w Arizonie. Prace budowlane w Japonii rozpoczną się przyszłym roku, a masowa produkcja chipów ma rozpocząć się w roku 2024. Japoński zakład będzie wyposażony w linie do produkcji w technologii 22 i 28 nanometrów. Będzie więc mniej zaawansowany technologicznie niż fabryka w Arizonie, gdzie powstanie 7-nanometrowa linia technologiczna. W Kraju Kwitnącej Wiśni z taśm produkcyjnych TSMC będą zjeżdżały podzespoły dla produktów konsumenckich, przemysłu samochodowego oraz Internet of Things. Dyrektor wykonawczy TSMC, C.C. Wei, poinformował, że firma otrzymała pomoc od japońskiego rządu i swoich japońskich klientów. Nie ujawnił wartości inwestycji, ale zrobił to premier Japonii Fumi Kishida, który poinformował parlament, że budowa pochłonie 8,8 miliarda USD, a część kosztów weźmie na siebie rząd. Japońska prasa dowiedziała się, że fabryka powstanie w prefekturze Kumamoto na zachodzie kraju, na ternie należącym do Sony i w pobliżu fabryki Sony, w której powstają matryce światłoczułe. Taka lokalizacja ma spory sens, gdyż Sony jest największym japońskim klientem TSMC. Światowy przemysł wciąż ma poważny problem z dostępnością półprzewodników. Niedawno Apple poinformował że najprawdopodobniej będzie zmuszony zmniejszyć tegoroczną produkcję iPhone'ów 13 nawet o 10 milionów sztuk. Do zmniejszenia produkcji została zmuszona też Toyota. Pandemia z pełną mocą ujawniła, jak bardzo producenci elektroniki z Europy, USA i Japonii są uzależnieni od chińskich, tajwańskich i południowokoreańskich producentów półprzewodników. Rozpoczęto więc działania, które mają zapobiegać tego typu sytuacjom w przyszłości. Sekretarz Handlu USA zaproponowała przeznaczenie 52 miliardów dolarów na badania nad półprzewodnikami i ich produkcję, Europa chce zwiększyć swoje możliwości produkcyjne, podobnie robi też Japonia. Na Uniwersytecie Tokijskim powołano dwie specjalne organizacje – Research Association for Advanced Systems (RAAS) oraz d.lab – których celem będzie ułatwienie wymiany technologicznej. W ramach RAAS, do której wstęp jest ograniczony, firmy takie jak TSMC, Hitachi czy Toppan mogą wymieniać się swoim know-how oraz korzystać z wyników zaawansowanych badań materiałowych, fizycznych i chemicznych prowadzonych na Uniwersytecie Tokijskim. « powrót do artykułu -
Arsenek boru chłodzi układy scalone lepiej niż diament
KopalniaWiedzy.pl dodał temat w dziale Technologia
Nowy półprzewodnik, arsenek boru (BAs), ma wysoką przewodność cieplną i może być zintegrowany ze współczesnymi chipami, by odprowadzić z nich ciepło i poprawić tym samym ich wydajność. Materiał ten lepiej rozprasza ciepło niż najlepsze dostępnie obecne systemy do chłodzenia podzespołów komputerowych – twierdzą twórcy arsenku boru. Coraz większa miniaturyzacja, możliwość umieszczenia na tej samej powierzchni coraz większej liczby tranzystorów, oznacza, że procesory są coraz szybsze. Pojawiają się jednak problemy z odprowadzaniem ciepła, szczególnie w postaci lokalnych punktów znacznie wyższej temperatury. Ciepło to negatywnie wpływa na wydajność układów. Yongjie Hu z Uniwersytetu Kalifornijskiego w Los Angeles stworzył niedawno wolny od wad arsenek boru. To materiał, który rozprasza ciepło znacznie lepiej niż inne metale i półprzewodniki, jak diament czy węglik krzemu. Hu i jego koledzy wykazali też, że można go zintegrować z układami scalonymi zawierającymi tranzystory z azotku galu. Następnie przeprowadzili badania, które wykazały, że w układzie scalonym ze zintegrowanym arsenkiem boru, pracującym z niemal maksymalną wydajnością, temperatura najcieplejszych punktów jest znacznie niższa niż w układach chłodzone za pomocą innych materiałów. W czasie eksperymentów punktowa temperatura układów scalonych z arsenkiem boru wzrosła od temperatury pokojowej do nieco poniżej 87 stopni Celsjusza, podczas gdy chłodzonych diamentem wyniosła niemal 137 stopni, a chłodzonych węglikiem krzemu – zbliżyła się do 167 stopni Celsjusza. Wykazaliśmy, że możemy przetwarzać strukturę BAs i integrować ją z chipem o wysokiej mobilności elektronów. To bardzo obiecujące rozwiązanie dla wysoko wydajnej elektroniki, mówi Hu. Dodatkową zaletą arsenku boru jest jego bardzo niski opór cieplny na styku z innym materiałem. To zaś oznacza, że transport ciepła odbywa się szybciej niż w przypadku konkurencyjnych rozwiązań. To tak, jakby ciepło mogło przeskoczyć przez przeszkodę, jaką stanowi styk dwóch materiałów, w porównaniu z innymi rozwiązaniami, gdzie zwalnia, by ostrożnie przeszkodę przekroczyć, wyjaśnia Hu. Naukowcy, zachęceni wynikami swoich eksperymentów, planują teraz zintegrować swój materiał z różnymi rodzajami obwodów i chipami o różnej architekturze. « powrót do artykułu- 1 odpowiedź
-
- arsenek boru
- chłodzenie
-
(i 1 więcej)
Oznaczone tagami:
-
Rynkowy sukces lub porażka układu scalonego zależą w dużej mierze od etapu jego projektowania. Wtedy właśnie zostają podjęte decyzje odnośnie umiejscowienia na krzemie modułów pamięci i elementów logicznych. Dotychczas zadania tego nie udawało się zautomatyzować, a etap projektowania zajmuje inżynierom całe tygodnie lub miesiące. Inżynierowie Google'a poinformowali właśnie, że stworzony przez nich system sztucznej inteligencji poradził sobie z częściowym zaprojektowaniem chipa w ciągu godzin. Współczesne układy scalone składają się z miliardów tranzystorów, dziesiątek milionów bramek logicznych, tysiące bloków logicznych i łączących je kilometrów ścieżek. Lokalizacja poszczególnych układów i bloków logicznych odgrywa kluczową rolę dla przyszłej wydajności chipa. Specjaliści od dziesięcioleci pracują nad rozwiązaniami pozwalającymi zautomatyzować proces projektowania. Jako że bloki logiczne to duże elementy, tysiące i miliony razy większe od bramek logicznych, bardzo trudno jest jednocześnie umieszczać bloki i bramki. Dlatego współcześni projektanci układów najpierw umieszczają na krzemie bloki, a wolne miejsca zostają zapełnione pozostałymi bramkami logicznymi. Już samo rozmieszczenie bloków jest niezwykle wymagające. Eksperci Google'a obliczyli, że liczba możliwych kombinacji rozmieszczenia makrobloków, które brali pod uwagę w swoich badaniach, wynosi 102500. Planując rozmieszczenie bloków, inżynierowie muszą pamiętać o pozostawieniu miejsca na inne elementy i ich łączenie. Azalia Mirhoseini i jej zespół poinformowali na łamach Nature o stworzeniu metody automatycznego wstępnego projektowania chipa w czasie krótszym niż 6 godzin, które swoimi wynikami dorównuje lub nawet przewyższa to, co potrafią doświadczeni inżynierowie. naukowcy z Google'a wykorzystali techniki maszynowego uczenia się do wytrenowania swojego programu tak, by rozmieszczał na planie makrobloki. Po umieszczeniu każdego z nich program dokonuje oceny całego chipa, a następnie wykorzystuje to, czego się nauczył, do zaplanowania jak najlepszego kolejnego kroku. Co interesujące, projekty tworzone przez google'owską SI znacząco różnią się od tego, jak projektuje człowiek. Sztuczna inteligencja rozpoczyna od największych makrobloków. Ponadto w jakiś sposób unika ciągłego poprawiania tego, co już zostało zrobione. Inżynierowie, po umieszczeniu kolejnych bloków, bardzo często poprawiają rozmieszczenie następnych. SI tego nie robi. Mimo to udało jej się zaprojektować układy, w których sygnał pomiędzy poszczególnymi elementami biegnie równie sprawnie, co między układami zaprojektowanymi przez ludzi. Google już stosuje metody opracowane prze Mirhoseini do projektowania układów dla przyszłej generacji systemów sztucznej inteligencji. Tymczasem producenci układów scalonych próbują odtworzyć osiągnięcie Google'a i wdrożyć podobne rozwiązania do własnego procesu projektowania. « powrót do artykułu
- 3 odpowiedzi
-
- sztuczna inteligencja
- układ scalony
-
(i 1 więcej)
Oznaczone tagami:
-
TSMC szykuje się do największego skoku technologicznego od lat
KopalniaWiedzy.pl dodał temat w dziale Technologia
Tajwański gigant TSMC, podczas Technology Symposium, zdradził nieco szczegółów na temat technologii 3- i 2-nanometrowych. Układy w technologii 3 nanometrów mają zjeżdżać z fabrycznych taśm w drugiej połowie przyszłego. roku. N3 będzie wykonany w technologii FinFET, a układy te mają być o 10-15 procent bardziej wydajne niż N5 przy tym samym poborze mocy. Zaś przy tej samej prędkości pracy N3 będą pobierały o 25–30 procent mniej energii niż N5. N3 pozwoli na zwiększenie gęstości upakowania układów logicznych o 70%, gęstość SRAM o 20%, a podzespołów analogowych o 10%. Wydaje się też, że klienci są bardzo zainteresowani układami N3. TSMC informuje, że już w tej chwili ma 2-krotnie więcej zamówień na N3 niż w analogicznym momencie było ich na N5. Jednak prawdziwym skokiem technologicznym dla TSMC będzie proces technologiczny N2. Układy 2-nanometrowe nie będą korzystały z technologii FinFET. Firma wykorzysta technologię nanopowłok. To najważniejsza zmiana od lat. TSMC informuje, że tranzystory z nanopowłok charakteryzują się aż 15-procentowym spadkiem zmienności napięcia progowego (Vt) w porównaniu z „bardzo dobrymi” tranzystorami FinFET. W przemyśle półprzewodnikowym Vt odnosi się do minimalnego napięcia wymaganego, by obwód działał i nawet najmniejsza zmienność w tym zakresie może prowadzić do problemów projektowych oraz spadku wydajności układu, wyjaśniają przedstawiciele TSMC. Firma potwierdziła jednocześnie swoje plany odnośnie budowy fabryki produkującej układy w technologii N2. Fabryka taka powstanie w Hsinchu na Tajwanie, a firma właśnie negocjuje zakup ziemi pod jej budowę. « powrót do artykułu- 3 odpowiedzi
-
- TSMC
- układ scalony
-
(i 4 więcej)
Oznaczone tagami:
-
Prezydent Biden wezwał Kongres, by przyznał 50 miliardów USD na wsparcie rodzimego przemysłu półprzewodnikowego. Jeśli Kongres wyrazi zgodę, będzie oznaczało to spory wzrost w porównaniu z ubiegłorocznymi ustawami American Foundries Act of 2020 i Creating Helpful Incentives to Produce Semiconductors, gdzie na wsparcie przewidziano 37 miliardów USD. Prezydent Biden wierzy, że w naszym kraju powinniśmy wytwarzać technologie i towary, które spełniają dzisiejsze wymagania i pozwolą wykorzystać przyszłe szanse, oświadczył Biały Dom. Biden chce, by w ramach Departamentu Handlu powstało nowe biuro, które zajmie się monitorowaniem krajowego przemysłu półprzewodnikowego i wsparciem inwestycji w tym zakresie. Prezydent chciałby uzyskać w Kongresie wsparcie obu największych partii, jednak jest to mało prawdopodobne. Lider mniejszości, Mitch McConnell, skrytykował plan Białego Domu, nazywając go koniem trojańskim, za którym ukrywają się podwyżki podatków szkodzące przedsiębiorstwom i klasie średniej. Jednak propozycję Bidena trzeba widzieć w szerszym kontekście. Tylko w bieżącym roku wydatki inwestycyjne dwóch wielkich azjatyckich producentów półprzewodników – TSMC i Samsunga – sięgną co najmniej 55,5 miliarda dolarów. Zatem w ciągu roku będzie to kwota większa, niż rozłożona na wiele lat propozycja Bidena. Ponad 70 lat temu cała światowa produkcja półprzewodników odbywała się w USA. Obecnie w Stanach Zjednoczonych produkowanych jest 12% półprzewodników powstających na świecie. Co prawda USA produkują większość kluczowego oprogramowania i sprzętu dla przemysłu półprzewodnikowego, ale same półprzewodniki powstają głównie na Tajwanie, w Korei Południowej i Chinach. W ubiegłym miesiącu największy amerykański producent półprzewodników, Intel, ogłosił, że wchodzi na rynek produkcji chipów na zlecenie. Chce na nim konkurować z TSMC i Samsungiem. Rozpoczyna od zainwestowania 20 miliardów USD w Arizonie. Do życia powoływane jest osobne przedsiębiorstwo o nazwie Intel Foundry Services. Co istotne, plany Intela nie są uzależnione od rządowego wsparcia. Rosnąca dominacja Samsunga i TSMC niesie ze sobą istotne skutki biznesowe i geopolityczne. Południowokoreański Samsung znajduje się w zasięgu broni atomowej Korei Północnej, a Tajwanowi wciąż zagrażają Chiny, uznające ten kraj za swoją zbuntowaną prowincję. Od kilkunastu miesięcy USA i poszczególne kraje Europy próbują zmniejszyć swoje uzależnieni od dostaw półprzewodników z zagranicy i chcą odbudować możliwości produkcyjne swojego przemysłu półprzewodnikowego. Jednak tego typu działania mogą spalić na panewce. Jak mówi Bill McClean, prezes firmy IC Insight specjalizującej się w badaniu rynku półprzewodników, by realistycznie myśleć o przynajmniej częściowym powrocie przemysłu półprzewodnikowego do USA rząd musiałby wydawać co najmniej 30 miliardów USD rocznie przez co najmniej pięć lat. Z kolei Mark Liu, przewodniczący TSMC stwierdza, że rządowe projekty budowy własnych krajowych łańcuchów dostaw mogą skończyć się zablokowaniem zdolności produkcyjnych i spadkiem marginesu zysku. Zdaniem Liu, działania takie są nierealistyczne z ekonomicznego punktu widzenia. Oczywiście sensownym jest, by największe światowe gospodarki były w stanie produkować układy scalone na potrzeby swojej obronności i infrastruktury na własnym terytorium. Jednak przeniesienie całego łańcucha dostaw i samodzielność w dziedzinie półprzewodników jest całkowicie nieefektywna. Te dodatkowe moce produkcyjne nie byłyby ekonomicznie opłacalne, stwierdza Liu. Na razie nie wiadomo, jak miałoby wyglądać wzmocnienie pozycji USA na rynku produkcji półprzewodników. Czy polegałoby to na zachęceniu TSMC i Samsunga do budowy fabryk w Stanach Zjednoczonych, czy na wsparciu dla rodzimych producentów czy też byłoby połączeniem obu tych projektów. Wiadomo za to, że TSMC i Samsung zapowiedziały zwiększenie inwestycji w USA, jednocześnie zaś lobbują o wsparcie rządowe. « powrót do artykułu
- 1 odpowiedź
-
- przemysł półprzewodnikowy
- układ scalony
-
(i 1 więcej)
Oznaczone tagami:
-
Naukowcy z Uniwersytetu Stanforda i SLAC National Accelerator Laboratory stworzyli pierwszy na świecie akcelerator cząstek na chipie. Za pomocą podczerwonego lasera na długości ułamka średnicy ludzkiego włosa można cząstkom nadać energię, którą mikrofale nadają im na przestrzeni wielu metrów. Akcelerator na chipie to prototyp, ale profesor Jelena Vuckovic, która kierowała zespołem badawczym, mówi, że zarówno projekt jak i techniki produkcyjne, można skalować tak, by uzyskać strumienie cząstek o energiach wystarczających do prowadzenia zaawansowanych eksperymentów chemicznych, biologicznych czy z nauk materiałowych. Akcelerator na chipie przyda się wszędzie tam, gdzie nie są wymagane najwyższe dostępne energie. Największe akceleratory są jak potężne teleskopy. Na świecie jest ich tylko kilka i naukowcy muszą przyjeżdżać do takich miejsc jak SLAC by prowadzić eksperymenty. Chcemy zminiaturyzować technologię akceleratorów, by stała się ona bardziej dostępnym narzędziem naukowym, wyjaśnia. Uczeni porównują swoje osiągnięcie do przejścia od potężnych mainframe'ów do posiadających mniejszą moc obliczeniową, ale wciąż użytecznych, pecetów. Fizyk Robert Byer mówi, że technologia accelerator-on-a-chip może doprowadzić do rozwoju nowych metod radioterapii nowotworów. Obecnie maszyny do radioterapii do wielkie urządzenia emitujące promieniowanie na tyle silne, że może ono szkodzić zdrowym tkankom. W naszym artykule stwierdzamy, że może być możliwe skierowanie strumienia cząstek precyzyjnie na guza, bez szkodzenia zdrowym tkankom, mówi uczony. Za każdym razem, gdy laser emituje impuls – a robi to 100 000 razy na sekundę – fotony uderzają w elektrony i je przyspieszają. Wszystko to ma miejsce na przestrzeni krótszej niż średnica ludzkiego włosa. Celem grupy Vukovic jest przyspieszenie elektronów do 94% prędkości światła, czyli nadanie im energii rzędu 1 MeV (milion elektronowoltów). W ten sposób otrzymamy przepływ cząstek o energii na tyle dużej, że będzie je można wykorzystać w medycynie czy badaniach naukowych. Stworzony obecnie prototyp układu zawiera 1 kanał przyspieszający. Do nadania energii 1 MeV potrzebnych będzie tysiąc takich kanałów. I, wbrew pozorom, będzie to prostsze niż się wydaje. Jako, że mamy tutaj w pełni zintegrowany układ scalony, znajdują się już w nim wszystkie elementy potrzebne do wykonania zadania. Vukovic twierdzi że do końca bieżącego roku powstanie chip w którym elektrony zyskają energię 1 MeV. Będzie on miał długość około 2,5 centymetra. Inżynier Olav Solgaard nie czeka na ukończenie prac nad chipem. Już teraz zastanawia się nad wykorzystaniem go w onkologii. Obecnie wysokoenergetyczne elektrony nie są używane w radioterapii, gdyż doprowadziłyby do oparzeń skóry. Dlatego też Solgaard pracuje rodzajem lampy elektronowej, którą wprowadzałoby się chirurgicznie w pobliże guza i traktowało chorą tkankę strumieniem elektronów generowanych przez akcelerator na chipie. Warto w tym miejscu przypomnieć o rewolucyjnym laserze BELLA (Berkeley Lab Laser Accelerator), o którym informowaliśmy przed kilku laty. To najpotężniejszy kompaktowy akcelerator na świecie. Na przestrzeni 1 metra nadaje on cząstkom energie liczone w gigaelektronowoltach (GeV). « powrót do artykułu
-
- akcelerator cząstek
- układ scalony
-
(i 4 więcej)
Oznaczone tagami:
-
TSMC pracuje nad 3-nanometrowym procesem technologicznym
KopalniaWiedzy.pl dodał temat w dziale Technologia
Prawo Moore'a żyje i ma się dobrze, uważa Mark Liu, przewodniczący zarządu TSMC. Firma poinformowała właśnie o rozpoczęciu prac badawczo-rozwojowych nad 3-nanometrowym procesem technologicznym. Jak stwierdził Philip Wong, wiceprezes ds. badawczych, Prawo Moore'a będzie obowiązywało jeszcze przez dziesięciolecia i pozwoli na tworzenie układów scalonych w technologii 2 i 1 nanometra. Największym problemem dla przemysłu półprzewodnikowego, przynajmniej na Tajwanie, może być niedobór inżynierów. To brak specjalistów może zagrozić dalszemu rozwojowi TSMC. Problem z odpowiednią ilością wykształconych pracowników będzie się jeszcze pogarszał, gdyż firmy z Chin agresywnie rekrutują inżynierów w innych państwach. Chcą, wykorzystując ich dotychczasowe doświadczenie, w sposób skokowy nadrobić przepaść technologiczną, jaka dzieli je od zagranicznej konkurencji. Już w tej chwili Chińczycy agresywnie rekrutują na Tajwanie i w Korei Południowej, oferując tamtejszym inżynierom znacznie wyższe płace niż te, na jakie mogą liczyć u siebie. « powrót do artykułu- 3 odpowiedzi
-
- Prawo Moore'a
- półprzewodnik
-
(i 4 więcej)
Oznaczone tagami:
-
AMD zaprezentowało niedawno 7-nanometrowe procesory z rodziny Ryzen 3, a Samsung może w ciągu najbliższych miesięcy rozpocząć produkcję kości w technologii 5-nanometrów. Stało się to możliwe dzięki temu, że w końcu poradzono sobie z problemami trapiącymi litografię w ekstremalnie dalekim ultrafiolecie (EUV). Świat czekał na litografię EUV od 15 lat. To technika litograficzna kolejnej generacji, która pracuje ze źródłem światła o długości fali 13,4–13,7 nanometra. Możliwości EUV nie kończą się jednak na kościach AMD i Samsunga. W ciągu 6 lat możemy być świadkami debiutu pierwszych układów z bramką o długości 2 nanometrów. Postęp oznacza też, że świat znowu odskoczył Chinom. Państwo środka może nie być w stanie dorównać możliwościom technologicznym firm z USA, Korei Południowej i Tajwanu przez kolejnych 10–15 lat. Chiny importują większość układów scalonych, sprzedaż najnowszego sprzętu litograficznego do Chin jest zablokowana, nałożono też ograniczenia na zatrudnianie przez chińskie firmy czołowych światowych specjalistów od litografii. Chińskie zapóźnienie to m.in. wynik mniejszych wydatków na prace badawczo-rozwojowe. W 2018 roku największy chiński producent półprzewodników, Semiconductor Manufacturing International, wydał na prace badawczo-rozwojowe 550 milionów dolarów. Rok wcześniej Intel przeznaczył na ten cel ponad 13 miliardów USD. Dzięki EUV w ciągu najbliższej dekady możemy zejść do poziomu 2-nanometrowych układów scalonych. Co dalej? Trudno powiedzieć. Musimy zdać sobie sprawę, że odległości pomiędzy atomami krzemu w sieci krystalicznej wynoszą około 0,27 nanometrów. Oznacza to, że 2-nanometrowa bramka logiczna będzie miała szerokość zaledwie 7 atomów. Można się spodziewać wielu różnych propozycji nowych architektur. Producenci półprzewodników będą musieli coś wymyślić, zanim pojawi się technologia pozwalająca wytwarzać jeszcze mniejsze bramki logiczne. Na nią przyjdzie nam jednak sporo poczekać. « powrót do artykułu
-
- EUV
- litografia
-
(i 1 więcej)
Oznaczone tagami:
-
Infekcja wirusem komputerowym, do jakiej doszło w TSMC wywołała obawy o ciągłość dostaw 7-nanometrowych układów scalonych. Infekcja nie mogła wydarzyć się w gorszym momencie. Trzeci kwartał roku to szczyt sezonu dla producentów układów. Wówczas produkują kości, które trafiają do takich odbiorców jak Apple, przygotowujących swoje produkty na okres świątecznych zakupów. Do infekcji doszło wieczorem 3 sierpnia. TSMC musiało wyłączyć część ze swoich linii produkcyjnych. Zainfekowane zostały główne fabryki TSMC pracujące z 12-calowymi plastrami, w tym Fab 12 w Hsinchu Science Park i Fab 15 w Central Taiwan Science Park. Niektóre zakłady zostały zamknięte nawet na 10 godzin, co oznaczało uszkodzenie tysięcy plastrów. Teraz w Fab 15 trwa walka z czasem. TSMC chce wywiązać się z zamówień na 7-nanometrowe układy scalone. Kości te produkowane są głównie dla Apple'a, AMD, Qualcommu, Nvidii i Xilinksa. Tego typu układy stanowią coraz ważniejsze źródło przychodu TSMC. Firma już wcześniej zapowiadała, że w trzecim kwartale bieżącego roku uzyska z nich 10% przychodów, w czwartym będzie to 20%, a w całym roku ponad 20% przychodów TSMC ma pochodzić właśnie z najnowocześniejszych układów scalonych. Wstępne szacunki mówią, że atak szkodliwego kodu wpłynie na 3% przychodów z bieżącego kwartału, a opóźnione dostawy układów scalonych trafią do zamawiających w czwartym kwartale. Straty firmy wyniosą najprawdopodobniej 88-98 milionów dolarów, z czego wartość zniszczonych plastrów to około 30 milionów. Pojawiły się już głosy, że cała ta sytuacja wpłynie na spadek zaufania klientów do TSMC. Tajwański producent układów scalonych poinformował, że przyczyną infekcji był "błąd podczas instalacji oprogramowania dla nowego narzędzia". Dalszych szczegółów nie podano. « powrót do artykułu
- 1 odpowiedź
-
- produkcja
- układ scalony
- (i 5 więcej)
-
W ubiegłym roku DARPA (Agencja Badawcza Zaawansowanych Projektów Obronnych) ogłosiła warty 1,5 miliarda dolarów program Electronic Resurgence Initiative (ERI). Będzie on prowadzony przez pięć lat, a w jego wyniku ma powstać technologia, która zrewolucjonizuje sposób projektowania i wytwarzania układów scalonych. Przeznaczona nań kwota jest czterokrotnie większa, niż typowe wydatki DARPA na projekty związane ze sprzętem komputerowym. W ostatnich latach postęp w dziedzinie sprzętu wyraźnie nie nadąża za postępem w dziedzinie oprogramowania. Ponadto Stany Zjednoczone obawiają się, że gdy przestanie obowiązywać Prawo Moore'a, stracą obecną przewagę na polu technologii. Obawa ta jest tym większa, że inne państwa, przede wszystkim Chiny, sporo inwestują w przemysł IT. Kolejny problem, to rosnąc koszty projektowania układów scalonych. Jednym z celów ERI jest znaczące skrócenie czasu projektowania chipów, z obecnych lat i miesięcy, do dni. Ma to zostać osiągnięte za pomocą zautomatyzowania całego procesu wspomaganego technologiami maszynowego uczenia się oraz dzięki nowym narzędziom, które pozwolą nawet mało doświadczonemu użytkownikowi na projektowanie wysokiej jakości układów scalonych. Obecnie nikt nie potrafi zaprojektować nowego układu scalonego w ciągu 24 godzin bez pomocy człowieka. To coś zupełnie nowego, mówi Andrew Kahng z Uniwersytetu Kalifornijskiego w San Diego, który stoi na czele jednego z zespołów zakwalifikowanych do ERI. Próbujemy zapoczątkować w elektronice rewolucję na miarę tej, jakiej dokonały browary rzemieślnicze na rynku sprzedaży piwa, stwierdził William Chapell, którego biuro z ramienia DARPA odpowiada za ERI. Innymi słowy, DARPA chce, by małe firmy mogły szybko i tanio projektować i produkować wysokiej jakości układy scalone bez polegania na doświadczeniu, zasobach i narzędziach dostarczanych przez rynkowych gigantów. Gdy Prawo Moore'a przestanie obowiązywać, najprawdopodobniej będziemy potrzebowali nowych materiałów i nowych sposobów na integrację procesora z układami pamięci. Ich znalezienie to jeden z celów ERI. Inny cel to stworzenie takiego sposobu integrowania ze sobą procesora i pamięci, który wyeliminuje lub znacząco ograniczy potrzebę przemieszczania danych pomiędzy nimi. W przyszłości zaś miałby powstać chip, który w tym samym miejscu będzie przechowywał dane i dokonywać obliczeń, co powinno znacząco zwiększyć wydajność i zmniejszyć pobór energii. DARPA chce też stworzyć sprzęt i oprogramowanie, które mogą być rekonfigurowane w czasie rzeczywistym do nowych zadań. Niektóre założenia ERI pokrywają się z tym, nad czym pracuje obecnie prywatny przemysł komputerowy. Przykładem takiego nakładania się jest próba stworzenia technologii 3-D system-on-chip. Jej zadaniem jest przedłużenie obowiązywania Prawa Moore'a za pomocą nowych materiałów jak np. węglowe nanorurki oraz opracowania lepszych sposobów łączenia ze sobą poszczególnych elementów układu scalonego. Podnoszą się jednak głosy mówiące, że DARPA i inne agendy rządowe wspierające badania IT, takie jak np. Departament Energii, powinny przeznaczać więcej pieniędzy na takie projekty. Profesor Erica Fuchs z Carnegie Mellon University zauważa, że prywatne przedsiębiorstwa skupiają się obecnie na bardziej wyspecjalizowanych zastosowaniach i mniej chętnie biorą udział w dużych wspólnych projektach. Zdaniem uczonej wysiłki amerykańskich agend rządowych w tym zakresie są o rząd wielkości za małe w stosunku do wyzwań, które czekają nas w najbliższej przyszłości. « powrót do artykułu
- 2 odpowiedzi
-
- Electronic Resurgence Initiative
- projektowanie
-
(i 4 więcej)
Oznaczone tagami:
-
Na Międzynarodowej Stacji Kosmicznej trwają badania, których celem jest stwierdzenie, czy NASA będzie mogła wykorzystywać w przyszłości standardowe układy elektroniczne. Obecnie w przestrzeni kosmicznej używa się chipów specjalnie chronionych przed szkodliwym wpływem promieniowania kosmicznego. Jeśli wszystko pójdzie zgodnie z planem, to pojazd Dragon, wracając na Ziemię, zabierze ze sobą dwa serwery, które przez niemal rok pracowały na ISS. Miało to symulować warunki, z jakimi elektronika zetknie się podczas podróży na Marsa. Jednocześnie NASA pracuje nad projektem układu ARM, który stanie się podstawą do budowy elektroniki przyszłości. Specjalna wersja ARM Cortex-A53 ma być gotowa w roku 2020. To układ, który zadebiutował w roku 2014, więc w momencie startu w przestrzeń kosmiczną będzie już przestarzały pod względem standardów współczesnej elektroniki. Mimo to i tak będzie stanowił krok naprzód w porównaniu do kości, które NASA obecnie wykorzystuje w misjach pozaziemskich. Agencja testuje też wpływ promieniowania na układy pamięci. Wspomniane wcześniej serwery zostały dostarczone przez Hewletta Packarda w ramach projektu Spaceborne Computer. Identyczna para maszyn pozostała na Ziemi i posłuży jako para kontrolna. Serwery HPE trafiły na ISS w sierpniu ubiegłego roku i pozwolą stwierdzić, czy NASA może zrezygnować z kosztownych chronionych przed promieniowaniem chipów na rzecz tańszych ogólnie dostępnych komponentów. Mark Fernandez, główny inżynier odpowiedzialny za projekt Spaceborne Computer mówi, że jeden z serwerów pracował z maksymalną prędkością, a drugi pracował wolniej. Jeśli okaże się, że wystąpiły anomalie i były one obecne tylko w szybko pracującej maszynie, to można będzie używać komputerów wolniej pracujących. Obecnie planuje się sprowadzenie na Ziemię obu serwerów w październiku. NASA rozpoczęła badania nad zachowaniem standardowych komputerów w przestrzeni kosmicznej w roku 2014. Jej partnerem była firma SGI. W międzyczasie SGI została przejęta przez Hewlett Packerd Enterprise. Serwery korzystają z procesorów Xeon Apollo 40. Uruchomiono na nich aplikacje wymagające intensywnych obliczeń i przesyłania dużej ilości danych. W czasie pracy dynamicznie dostosowywano ich pobór mocy, by lepiej symulować warunki panujące podczas podróży na Marsa. « powrót do artykułu
- 4 odpowiedzi
-
- NASA
- układ scalony
-
(i 2 więcej)
Oznaczone tagami:
-
Alibaba będzie projektowała własne układy scalone
KopalniaWiedzy.pl dodał temat w dziale Technologia
Chiński gigant internetowy, Alibaba Group, poinformował o przejęciu firmy C-Sky Microsystems. Zakupione przez Alibabę przedsiębiorstwo specjalizuje się w projektowaniu 32-bitowych rdzeni CPU. Działania Alibaby to kolejny przykład najnowszego tredu, zgodnie z którym firmy takie jak Google czy Amazon przejmują producentów układów scalonych, by projektować kości pasujące do ich modelu biznesowego. C-Sky powstała w Hangzhou w 2001 roku i od dłuższego czasu miała unikatowe stosunki z Alibabą. Była m.in. pierwszą firmą półprzewodnikową, w którą Alibaba zainwestowała znaczne sumy. Profesor Xiaolang Yan, założyciel i szef C-Sky od dawna starał się uświadomić Alibabie, że sprzęt jest kluczowym elementem przyszłego sukcesu internetowego giganta. W 2003 roku C-Sky opracowało swój pierwszy rdzeń CK510. Od tamtej pory firma powiększyła swoją ofertę, w której znajduje się obecnie wiele modeli 32-bitowych energooszczędnych CPU o wysokiej wydajności. Przedsiębiorstwo specjalizuje się projektowaniu układów, które następnie licencjonuje. W ofercie firmy, obok rdzeni CPU, są platformy SoC oraz narzędzia programistyczne. W ubiegłym roku C-Sky miało 70 klientów w Chinach. C-Sky działa na rynku urządzeń wbudowanych oraz Internet-of-Things. Firma nie ma zamiaru wchodzić na rynek smartfonów. Oczywiście pozostaje pytanie, czy przedsiębiorstwo to ma jakiekolwiek szanse w starciu z takimi gigantami jak np. ARM. Warto jednak zauważyć, że chińskie firmy półprzewodnikowe mogą liczyć na silne wsparcie rządu Państwa Środka. Władze w Pekinie chcą bowiem uniezależnić swój przemysł IT od producentów zewnętrznych. « powrót do artykułu-
- Alibaba
- C-Sky Microsystems
-
(i 2 więcej)
Oznaczone tagami: