Znajdź zawartość
Wyświetlanie wyników dla tagów ' układ planetarny' .
Znaleziono 4 wyniki
-
Śmierć gwiazdy musiała być tak gwałtowna, że powstały w jej wyniku pobliski biały karzeł wchłania obecnie materię zarówno z wewnętrznych, jak i zewnętrznych obszarów swojego układu planetarnego. Astronomowie po raz pierwszy zaobserwowali białego karła pochłaniającego szczątki zarówno planet skalistych, jak i obiektów lodowych. Nigdy wcześniej nie widzieliśmy, by na powierzchnię białego karła jednocześnie opadały te oba typy obiektów. Mamy nadzieję, że dzięki temu lepiej zrozumiemy układy planetarne, które wciąż pozostają nienaruszone, stwierdził Ted Johnson z University of California Los Angeles (UCLA). Badania dają naukowcom unikatową okazję do zbadania składu planet pozasłonecznych. Mimo,że znamy obecnie ponad 5000 egzoplanet, nasza wiedza o składzie wewnętrznym planety ogranicza się do Ziemi. Tymczasem w pochłanianych przez białego karła szczątkach naukowcy obserwują azot, tlen, magnez, krzem, żelazo i inne pierwiastki. Bardzo duża ilość żelaza sugeruje, że doszło do rozerwania planet skalistych, a biały karzeł wchłania szczątki ich żelaznych jąder. Z kolei niespodziewanie duża obecność azotu sugeruje obecność obiektów lodowych. Najbardziej pasuje do tego mieszanina w stosunku 2:1 materiału z planety podobnej do Merkurego z materiałem z komet. Dużo żelaza i zamrożonego azotu sugerują bardzo różne warunki formowania się planet. W Układzie Słonecznym nie znamy obiektu, który miałby taki skład, dodaje Johnson. Odkrycie jest interesujące również z innego powodu. Uważa się bowiem, że niewielkie lodowe obiekty „nawodniły” suche skaliste planety Układu Słonecznego. Przed miliardami lat komety i asteroidy dostarczyły wodę na Ziemię, tworząc warunki do powstania życia. Skoro zaś teraz gwiazda, która zniszczyła swój układ planetarny, pochłania duże ilości lodu, może to oznaczać, że duże rezerwuary wody są czymś powszechnym w układach planetarnych. Życie, jakie znamy, wymaga skalistej planety bogatej w takie pierwiastki jak węgiel, tlen czy azot. Obfitość tych pierwiastków, jaką obserwujemy w przypadku tego białego karła, wskazuje na obecność zarówno obiektów skalistych jak i bogatych w pierwiastki lotne. To pierwszy taki przypadek wśród setek zbadanych białych karłów, dodaje profesor Benjamin Zuckerman z UCLA. Teorie dotyczące ewolucji systemów planetarnych opisują m.in. to, co dzieje się, gdy czerwony olbrzym zmienia się w białego karła. Gwiazda gwałtownie traci zewnętrzne warstwy, dochodzi do dramatycznych zmian orbit planet. Obiekty, jak asteroidy czy planety karłowate, które znajdą się zbyt blisko umierającej gwiazdy, zostają przez nią wchłonięte. Najnowsze badania, w czasie których naukowcy przyglądają się białemu karłowi G238-44 położonemu zaledwie 86 lat świetlnych od Ziemi, dowodzą, że około 100 milionów lat po tym, jak gwiazda weszła w fazę białego karła, jest ona w stanie pochłaniać materiał z regionów odpowiadających pasowi asteroid i pasowi Kuipera w Układzie Słonecznym. « powrót do artykułu
- 3 odpowiedzi
-
- biały karzeł
- układ planetarny
-
(i 1 więcej)
Oznaczone tagami:
-
Vincent Bourrier z Uniwersytetu w Genewie stoi na czele międzynarodowego zespołu naukowego, który zauważył, że nieznany obiekt musiał wpłynąć na orbity dwóch planet pozasłonecznych. Są one bowiem odchylone od równika gwiazdy aż o 90 stopni. Gwiazdy i ich planety powstają z tego samego obracającego się dysku pyłu i gazu. Dlatego też planety powinny obiegać swoją gwiazdę w płaszczyźnie jej równika. Oczywiście od tej reguły istnieją mniejsze lub większe odstępstwa. W Układzie Słonecznym orbity planet są odchylone od płaszczyzny co najwyżej o kilka stopni. Wyróżnia się tutaj Pluton. Orbita tej planety karłowatej odchylona jest od płaszczyzny równika Słońca o 17 stopni. Jednak to niewiele w porównaniu z tym, o czym właśnie donieśli uczeni ze Szwajcarii, Włoch, Niemiec i Kanady. W 2019 roku astronomowie zauważyli, że dwa „mini Neptuny” krążące wokół gwiazdy HD 3167 mają orbity odchylone aż o 90 stopni. Wówczas nie byli w stanie zbadać orbity trzeciej, mniejszej planety. Dokonał tego właśnie zespół Bourriera. Naukowcy wykorzystali dwa instrumenty należące do Europejskiej Agencji Kosmicznej: spektrograf ESPRESSO stanowiący część Very Large Telescope w Chile oraz teleskop kosmiczny CHEOPS. Dzięki nim stwierdzili, że superZiemia HD3167b jest odchylona od płaszczyzny równika swojej gwiazdy zaledwie o kilka stopni. Obiega ona ją w ciągu 23 godzin. Innymi słowy orbita HD 3167b jest prostopadła względem orbit dwóch większych planet. To zaś sugeruje, ze orbity dwóch zewnętrznych planet zostały znacząco odchylone przez jakiś nieznany obiekt. Bourrier i jego zespół chcą teraz rozszerzyć swoje poszukiwania w nadziei, że znajdą kolejnego towarzysza HD 3167, odpowiedzialnego za odchylenie orbit obu planet. Tego typu badania mogą nam wiele powiedzieć o historii układów planetarnych oraz o wczesnej ewolucji orbit planet. Więcej informacji na temat niezwykłego układu planetarnego znajdziemy w artykule The Rossiter–McLaughlin effect revolutions: an ultra-short period planet and a warm mini-Neptune on perpendicular orbits. « powrót do artykułu
-
Very Large Telescope sfotografował pierwszy znany nam pozasłoneczny układ planetarny, w którym wokół młodszej wersji Słońca krążą dwa gazowe olbrzymy. Układ TYC 8998-760-1 znajduje się w odległości 300 lat świetlnych od Ziemi w Gwiazdozbiorze Muchy. Układ jest rzeczywiście niezwykły. Jego centrum stanowi gwiazda o masie Słońca, która liczy sobie zaledwie 17 milionów lat. Bliższa ze sfotografowanych planet znajduje się w odległości 160 jednostek astronomicznych od gwiazdy i ma masę 14-krotnie większą od masy Jowisza. Gazowy olbrzym jest więc na granicy masy pomiędzy planetą a brązowym karłem. Drugą zaś z planet dzieli od gwiazdy macierzystej aż 320 jednostek astronomicznych. Masa tej planety jest 6-krotnie większa od masy Jowisza. Odległości dzielące obie planety od gwiazdy są zatem olbrzymie w porównaniu z Układem Słonecznym. Neptun, planeta najbardziej odległa od Słońca, znajduje się w odległości 30 j.a. Z kolei średnia odległość Plutona to 39 j.a. Odkrycie to daje nam pogląd na środowisko bardzo podobne do Układu Słonecznego, ale na znacznie wcześniejszym etapie rozwoju, mówi główny autor badań, doktorant Alexander Bohn z holenderskiego Uniwersytetu w Leiden. « powrót do artykułu
- 1 odpowiedź
-
- TYC 8998-760-1
- układ planetarny
-
(i 2 więcej)
Oznaczone tagami:
-
Coryn A.L. Bailer-Jones z Instytutu Astronomii im. Maxa Plancka i Davide Farnocchia z Jet Propulsion Laboratory obliczyli, kiedy wysłane przez człowieka pojazdy zbliżą się do gwiazd innych niż Słońce. Obliczeń dokonali dla pojazdów Pioneer 10, Pioneer 11, Voyager 1 i Voyager 2. To wysłane w latach 70. sondy kosmiczne, jedyne dotychczas pojazdy, które opuściły lub opuszczą Układ Słoneczny. Oba Pioneery już nie działają. Również i Voyagery przestaną pracować na długo, zanim znajdą się w pobliżu jakiejkolwiek gwiazdy. Jednak, jeśli nie zdarzy się nic nieprzewidzianego, w końcu dotrą do gwiazd. Bailer-Jones i Farnocchia wykorzystali dane z satelity Gaia dotyczące położenia i prędkości 7,2 miliona gwiazd. Wyliczyli drogę gwiazd oraz drogę wszystkich czterech sond. Wstępnie wytypowali gwiazdy, do których sondy zbliżą się na odległość nie większą niż 15 parseków (1 pc to około 3,27 roku świetlnego). Dla każdej z sond było około 4500 takich gwiazd. Następnie dokonali dokładniejszych obliczeń, by określić najbardziej interesujące spotkania pomiędzy sondą a gwiazdą. W ciągu najbliższego miliona lat sony znajdą się w pobliżu około 60 gwiazd, w tym w 10 przypadkach będzie to odległość mniejsza niż 2 parseki. Okazało się, że w trzech przypadkach (Voyagera 1, Voyagera 2 i Pioneera 11) pierwszą napotkaną gwiazdą będzie Proxima Centauri, gwiazda najbliższa Słońcu. Pierwszy dotrze do niej Voyager 1, który za 16 700 lat znajdzie się w odległości 1,072 parseka od Proximy. Następnie, za 18 300 lat Pioneer 11 podleci do niej na odległość 1,040 pc, a ostatni, w odległości 0,878 pc odwiedzi ją Voyager 2. Nastąpi to za 20 300 lat. Pioneer 10 napotka swoją pierwszą gwiazdę za 33 800 lat i będzie to Ross 248, którą sonda minie w odległości 1,041 parseka. Pioneer 10 będzie za to pierwszą sondą, która wleci w obcy układ planetarny. Za 90 000 lat zbliży się ona bowiem na 0,23 pc do gwiazdy HIP 117795. Znajduje się ona w Gwiazdozbiorze Kasjopei w odległości 83,5 roku świetlnego od Słońca. Pozostałe sondy także będą miały równie bliskie spotkania z gwiazdami. Voyager 1 za około 303 000 lat podleci na odległość 0,30 pc do gwiazdy TYC 3135-52-1, Voyager 2 będzie potrzebował 42 000 lat by minąć gwiazdę Ross 248 w odległości 0,53 pc, a Pioneer 11 minie TYC 992-192-1 w odległości 0,245 pc. Nastąpi to za 928 300 lat. « powrót do artykułu
- 9 odpowiedzi
-
- układ planetarny
- Proxima Centauri
-
(i 6 więcej)
Oznaczone tagami: