Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów ' uderzenie' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 7 wyników

  1. W najbliższy piątek, 4 marca, fragment rakiety nośnej spadnie po niewidocznej z Ziemi stronie Księżyca. Naukowcy postanowili skorzystać z okazji i przeprowadzić dodatkowe badania Srebrnego Globu. Satelita Lunar Reconnaissance Orbiter (LRO) zbada po uderzeniu zmiany w atmosferze Księżyca oraz powstały krater. Ocenia się, że fragment rakiety uderzy w krater Hertzsprung w piątek o godzinie 13:25 czasu polskiego. To, o ile wiadomo, pierwszy raz, gdy dojdzie do takiego wydarzenia. Dotychczas ludzie rozbijali pojazdy o powierzchnię Srebrnego Globu albo przypadkiem, podczas nieudanych prób lądowania, albo też celowo. Początkowo sądzono, że obserwowany fragment zdążający w stronę Księżyca, to pozostałości rakiety Falcon 9 firmy SpaceX. Jednak po szczegółowej analizie spektrum światła odbijanego przez obiekt, eksperci doszli do wniosku, że lepiej pasuje ono do rodzaju farby używanej przez Chińczyków. Uznano, że to kawałek chińskiej rakiety Długi Marsz 3C, która została wystrzelona w 2014 roku w ramach misji Chang'e 5-T1. W ramach tej misji pojazd Chang'e 5-T1 przeleciał za Księżycem i powrócił na Ziemię. Celem zaś było przetestowanie możliwości wejścia w atmosferę na potrzeby bezzałogowej misji Chang'e 5, która w 2020 roku przywiozła próbki księżycowego gruntu. Uderzenie, które nastąpi 4 marca, będzie podobne do upadku trzeciego stopnia rakiety Saturn V, który w ramach programu Apollo został celowo rozbity o powierzchnię Księżyca. Jak wyjaśniają eksperci, pozostałości rakiety Długi Marsz nie utworzą zbyt głębokiego krateru na powierzchni. Podobnie zresztą było w przypadku Saturn V. Oba fragmenty można bowiem porównać do puszek do piwa i podczas zderzenia znaczna część energii zostanie zużyta na zgniecenie rakiet, a nie na wyżłobienie krateru. Uderzenie fragmentu chińskiej rakiety to bardzo dobra okazja do badań i lepszego zrozumienia procesu powstawania kraterów uderzeniowych na Księżycu. Lekcja tym cenniejsza, że LRO wykonał już bardzo szczegółowe zdjęcia miejsca spodziewanego uderzenia, więc uczeni będą dysponowali materiałem porównawczym. Jedynym nieznanym parametrem jest obecnie orientacja fragmentu w stosunku do jego trajektorii. Wiadomo, że się on obraca, nie wiadomo jednak dokładnie, w jaki sposób. Specjaliści mają nadzieję, że Chińczycy to wiedzą i podzielą się swoimi danymi. « powrót do artykułu
  2. NASA uruchomiła system monitoringu asteroid nowej generacji. Dzięki niemu Agencja lepiej będzie mogła ocenić zagrożenie, jakie dla naszej planety stwarzają poszczególne asteroidy.  Obecnie znamy 27 744 asteroid bliskich Ziemi. Jest wśród nich 889 obiektów o średnicy przekraczającej 1 km i 9945 asteroid o średnicy ponad 140 metrów. Jednak w najbliższym czasie ich liczba znacznie się zwiększy. Stąd potrzeba doskonalszego algorytmu oceny zagrożenia. W ciągu najbliższych lat prace rozpoczną nowocześniejsze, bardziej zaawansowane teleskopy. Można się więc spodziewać szybkiego wzrostu liczy nowo odkrytych asteroid, których orbity trzeba będzie obliczyć i nadzorować. W kulturze popularnej asteroidy są często przedstawiane jako obiekty chaotyczne, gwałtownie zmieniające kurs i zagrażające Ziemi. W rzeczywistości jednak są niezwykle przewidywalne i krążą wokół Słońca po znanych orbitach. Czasem jednak z obliczeń wynika, że orbita asteroidy znajdzie się blisko Ziemi. Wówczas, ze względu na niewielkie niepewności co do dokładnej pozycji asteroidy, nie można całkowicie wykluczyć uderzenia. Astronomowie używają się złożonych systemów monitorowani i obliczania orbit, które automatycznie obliczają ryzyko zderzenia asteroidy z Ziemią. Należące do NASA Center for Near Earth Object Studies (CNEOS) oblicza orbity dla każdej znanej asteroidy i przekazuje dane do Planetary Defense Coordinatio Office (PDCO). Od 2002 roku CNEOS wykorzystuje w tym celu oprogramowanie Sentry. Pierwsza wersja Sentry to bardzo dobre oprogramowanie, które działa od niemal 20 lat. Wykorzystuje bardzo sprytne algorytmy. W czasie krótszym niż godzina potrafi z dużym prawdopodobieństwem ocenić ryzyko zderzenia z konkretną asteroidą w ciągu najbliższych 100 lat, mówi Javier Roa Vicens, który stał na czele grupy pracującej nad Sentry-II, a niedawno przeniósł się do SpaceX. Sentry-II korzysta z nowych bardziej dokładnych i wiarygodnych algorytmów, które potrafią obliczyć ryzyko uderzenia z dokładnością wynoszącą ok. 5 na 10 000 000. Ponadto bierze pod uwagę pewne elementy, których nie uwzględniało Sentry. Gdy asteroida wędruje w Układzie Słonecznym, o jej orbicie decyduje przede wszystkim oddziaływanie grawitacyjne Słońca. Wpływ na jej orbitę ma też grawitacja planet. Sentry z dużą dokładnością potrafi obliczyć wpływ sił grawitacyjnych, pokazując, w którym miejscu przestrzeni kosmicznej asteroida znajdzie się za kilkadziesąt lat. Jednak Sentry nie uwzględnia sił innych niż grawitacja. A najważniejszymi z nich są siły oddziałujące na asteroidę w wyniku ogrzewania jej przez Słońce. Asteroidy obracają się wokół własnej osi. Zatem są ogrzewane przez Słońce z jednej strony, następnie ogrzana strona odwraca się od Słońca i stygnie. Uwalniana jest wówczas energia w postaci promieniowania podczerwonego, która działa jak niewielki, ale stały napęd. To tzw. efekt Jarkowskiego. Ma on niewielki wpływ na ruch asteroidy w krótki terminie, jednak na przestrzeni dekad i wieków może znacząco zmienić orbitę asteroidy. Fakt, że Sentry nie potrafił automatycznie uwzględniać efektu Jarkowskiego był poważnym ograniczeniem. Za każdym razem, gdy mieliśmy do czynienia z jakimś szczególnym przypadkiem – jak asteroidy Apophis, Bennu czy 1950 DA – musieliśmy ręcznie dokonywać skomplikowanych długotrwałych obliczeń. Dzięki Sentry-II nie będziemy musieli tego robić, mówi Davide Farnocchia, który pracował przy Sentry-II. Ponadto oryginalny algorytm Sentry miał czasem problemy z określeniem prawdopodobieństwa kolizji, gdy orbita asteroidy miała znaleźć się niezwykle blisko Ziemi. Na takie asteroidy w znaczący sposób wpływa grawitacja planety i w takich przypadkach gwałtownie rosła niepewność co do przyszłej orbity asteroidy po bliskim spotkaniu z Ziemią. Sentry mógł mieć wówczas problemy i konieczne było przeprowadzanie ręcznych obliczeń i wprowadzanie poprawek. W Sentry-II nie będzie tego problemu. Co prawda takie szczególne przypadki stanowią obecnie niewielki odsetek wszystkich obliczeń, ale spodziewamy się, że po wystrzeleniu przez NASA misji NEO Surveyor i uruchomieniu Vera C. Rubin Observatory, ich liczba wzrośnie, musimy więc być przygotowani, mówi Roa Vicens. NASA zdradza również, że istnieje zasadnicza różnica w sposobie pracy Sentry i Sentry-II. Dotychacz gdy teleskopy zauważyły nieznany dotychczas obiekt bliski Ziemi astronomowie określali jego pozycję na niebie i wysyłali dane to Minor Planet Center. Dane te były wykorzystywane przez CNEOS do określenia najbardziej prawdopodobnej orbity asteroidy wokół Słońca. Jednak, jako że istnieje pewien margines niepewności odnośnie obserwowanej pozycji asteroidy wiadomo, że orbita najbardziej prawdopodobna nie musi być tą prawdziwą. Rzeczywista orbita asteroidy mieści się w znanych granicach niepewności pomiarowej. Sentry, by obliczyć prawdopodobieństwo zderzenia z Ziemią, wybierał zestaw równomiernie rozłożonych punktów w obszarze niepewności pomiarowej, uwzględniając przy tym jednak tę część obszaru, w której z największym prawdopodobieństwem znajdowały się orbity zagrażające Ziemi. Każdy z punktów reprezentował nieco inną możliwą rzeczywistą pozycję asteroidy. Następnie dla każdego z nich algorytm określał orbitę asteroidy w przyszłości i sprawdzał, czy któraś z nich przebiega blisko Ziemi. Jeśli tak, to skupiał się na tej orbicie, wyliczając dla niej prawdopodobieństwo uderzenia. Sentry-II działa inaczej. Wybiera tysiące punktów rozłożonych na całym obszarze niepewności pomiarowej. Następnie sprawdza, które z możliwych punktów w całym regionie są powiązane z orbitami zagrażającymi Ziemi. Innymi słowy, Sentry-II nie jest ograniczony założeniami dotyczącymi tego, gdzie na obszarze marginesu błędu pomiarowego mogą znajdować się orbity najbardziej zagrażające Ziemi. Bierze pod uwagę cały obszar, dzięki czemu może wyłapać też bardzo mało prawdopodobne scenariusze zderzeń, które mogły umykać uwadze Sentry. Farnocchia porównuje to do szukania igły w stogu siana. Igły to możliwe zderzenia, a stóg siana to cały obszar błędu pomiarowego. Im większa niepewność odnośnie pozycji asteroidy, tym większy stóg siana, w którym trzeba szukać. Sentry sprawdzał stóg siana wielokrotnie, szukając igieł wzdłuż pojedynczej linii przebiegającej przez cały stóg. Sentry-II nie korzysta z żadnej linii. Szuka w całym stogu. Sentry-II to olbrzymi postęp w dziedzinie zidentyfikowania nawet najmniej prawdopodobnych scenariuszy zderzenia wśród olbrzymiej liczby wszystkich scenariuszy. Gdy konsekwencje przyszłego uderzenia asteroidy mogą być naprawdę katastrofalne, opłaca się poszukać nawet tych mało prawdopodobnych scenariuszy, mówi Steve Chesley, który stał na czele grupy opracowującej Sentry i pomagał przy pracy nad Sentry-II. Szczegółowy opis Sentry-II znajdziemy na łamach The Astronomical Journal. Poniższy film pokazuje zaś w jaki sposób określono orbitę asteroidy Bennu z uwzględnieniem sił grawitacyjnych i niegrawitacyjnych.   « powrót do artykułu
  3. Niekiedy ośmiornice polują z rybami. Polowanie zbiorowe pozwala objąć działaniami większy obszar i zwiększa szanse na schwytanie ofiary. Okazuje się jednak, że gdy ośmiornice Octopus cyanea są niezadowolone z partnerów albo anulują współpracę, stosują uderzenia ramieniem. Naukowcy porównują to do ciosu pięścią i nazywają aktywnym przemieszczeniem (ang. active displacement) ryby. Czasowe sojusze między ośmiornicami i rybami rafowymi są dokumentowane od dziesięcioleci. Mogą one obejmować licznych uczestników z rożnych gatunków - podkreślają autorzy publikacji z pisma Ecology. Ośmiornice i ryby są znane ze zbiorowych polowań, podczas których czerpią korzyści z morfologii [budowy] i strategii polowań drugiej strony - podkreśla Eduardo Sampaio, doktorant z Uniwersytetu w Lizbonie oraz Instytutu Zachowania Zwierząt Maxa Plancka. Ponieważ dochodzi do połączenia sił licznych partnerów, tworzy się złożona sieć, w której zaangażowanie i odnoszone korzyści mogą nie być zrównoważone. Daje to początek różnym mechanizmom kontroli partnera. Czasem ryby i ośmiornice współpracują przez ponad godzinę, przy czym poszczególne gatunki zajmują różne pozycje. Ośmiornice ścigają ofiary przemykające wokół skał i chowające się w ciasnych przestrzeniach, ryby takie jak Parupeneus cyclostomus przeszukują dno, a inne patrolują kolumnę wody. Okazuje się jednak, że współpraca nie zawsze przebiega korzystnie dla ryb. Między 2018 a 2019 r. podczas nurkowania w okolicach Ejlatu w Izraelu i Al-Kusajr w Egipcie naukowcy zaobserwowali 8 incydentów, podczas których ośmiornice nagle uderzały partnera. Widząc to po raz pierwszy, zacząłem się śmiać i prawie zadławiłem się automatem oddechowym - opowiada Sampaio. Ryba może zostać zepchnięta na obrzeża grupy albo w ogóle dostaje się poza nią. Czasem po chwili wraca [...]. Sampaio dodaje, że choć wcześniej wiedziano, że ośmiornicom zdarza się uderzyć przy odpieraniu ataków pewnych ryb lub podczas walki o pokarm, po raz pierwszy opisano takie zachowanie w odniesieniu do polowania zbiorowego. W ramach studium zespół Sampaio obserwował interakcje między O. cyanea i różnymi rybami z Morza Czerwonego, np. Epinephelus fasciatus czy wariolami (Variola louti). Liczne obserwacje [...] sugerują, że uderzanie spełnia w relacjach międzygatunkowych konkretną funkcję. Z ekologicznego punktu widzenia dla ośmiornicy uderzanie ryby-partnera stanowi niewielki koszt energetyczny. W przypadku ryby tak już jednak nie jest. Naukowcy dywagują, że uderzanie ma trzymać ryby w ryzach, odpędzając je od ofiary, zmieniając ich pozycję w grupie, a nawet eliminując je z polowania. Czasem, w przypadkach gdy ryby nie wnoszą niczego do polowania i próbują, dosłownie, żerować na pracy innych, ośmiornica może uderzać z powodu zwykłego współzawodnictwa. Sampaio dodaje, że choć sojusze międzygatunkowe mogą być korzystne dla obu stron, nie oznacza to wcale, że nie zostaną zerwane, gdy nadarzy się okazja. Mimo współpracy, każdy z partnerów zawsze będzie próbował maksymalizować swoje korzyści. W sytuacji kiedy ofiara jest łatwo dostępna, ośmiornica wydaje się stosować uderzenia jako metodę kontrolowania zachowania partnera [...]. W 2 przypadkach stwierdzono, że uderzanie miało miejsce nawet wtedy, gdy nie wydawało się mieć związku z próbą zapewnienia sobie ofiary. Możliwe są tu dwa scenariusze. W pierwszym ośmiornica całkowicie ignoruje korzyści i uderzanie jest złośliwym zachowaniem, które ma wytworzyć koszty dla ryb. W drugim scenariuszu uderzenie jest [natomiast] formą agresji z odroczonymi korzyściami, np. [...] karą; chcąc promować współpracę podczas przyszłych zdarzeń, ośmiornica uderza, ponosząc niewielkie koszty (koszt dla partnera jest już jednak znaczący). Jak jest naprawdę, wyjaśnić mogą dopiero kolejne badania. Szczegółowe analizy ilościowe polowań zbiorowych mogą pomóc w rozważeniu różnych pytań ekologicznych, np. kwestii istnienia uprzywilejowanych relacji między ośmiornicami i konkretnymi rybimi partnerami (w ocenie, czy niektóre gatunki bądź osobniki są uderzane częściej niż pozostałe). Chcemy zrozumieć, jak w kontekście całej grupy wcześniejsze interakcje między zwierzętami mogą prowadzić do uderzenia [danej] ryby i co się później zmienia.   « powrót do artykułu
  4. Algorytm sztucznej inteligencji zidentyfikował 11 asteroid o średnicy ponad 100 metrów każda, które mogą uderzyć w Ziemię i spowodować olbrzymie zniszczenia. Każdy z tych obiektów jest znacznie większy od meteorytu tunguskiego (50–80 metrów średnicy), który eksplodował na Ziemią i powalił drzewa na obszarze ponad 2000 km2. Z pisma Astronomy & Astrophysics dowiadujemy się, że naukowcy z holenderskiego Uniwersytetu w Leiden stworzyli algorytm sztucznej inteligencji, który trenowali na superkomputerze ALICE. John D. Hefele, Francesco Bortolussi i Simon Portegies Zwart wykorzystali sieć neuronową, na której najpierw modelowali ruch planet i Słońca w ciągu najbliższych 10 000 lat. Następnie „przewinęli” swoją symulację od tyłu, dodając do niej hipotetyczne asteroidy „wyrzucane” z Ziemi w przestrzeń kosmiczną. Gdy uruchomili symulację we właściwej kolejności, otrzymali bazę danych wyimaginowanych asteroid, które mogłyby uderzyć w Ziemię. Ta baza posłużyła im do treningu sieci neuronowej, której zadaniem było następnie określenie, która z prawdziwych znanych nam asteroid może stanowić zagrożenie dla naszej planety. Testy dowiodły, że oprogramowanie, nazwane Hazard Object Identifier (HOI, co po holendersku oznacza też „cześć”), potrafi zidentyfikować 90,99% potencjalnie niebezpiecznych obiektów z udostępnionej przez NASA 2000 obiektów bliskich Ziemi. Kolejne symulacje wykazały, że w latach 2131 – 2923 co najmniej 11 dużych, ponad 100-metrowych znanych nam obecnie asteroid, przybliży się do Ziemi na odległość mniejszą niż 1/10 odległości pomiędzy Ziemią a Księżycem. Obserwacje obiektów bliskich Ziemi (NEO) prowadzone są od lat. Jednak obecnie stosowane oprogramowanie nie rozpoznało w tych asteroidach zagrożenia. Stało się tak dlatego, że asteroidy mają trudne do przewidzenia orbity, a oprogramowanie to używa innych metod obliczeniowych niż wspomniany algorytm sztucznej inteligencji. Wiemy teraz, że nasze oprogramowanie działa. Będziemy chcieli je udoskonalić i wykorzystać w nim więcej danych. Problem w tym, że niewielkie różnice w obliczeniach orbity mogą prowadzić do bardzo różnych wniosków, mówi profesor Portegies Zwart. Tego typu badania pozwolą nam w przyszłości uchronić Ziemię przed katastrofalnym w skutkach zderzeniem z asteroidą. Im szybciej dowiemy się o zagrożeniu, tym więcej czasu będziemy mieli, by na nie zareagować. Nie od dzisiaj bowiem prowadzi się badania koncepcyjne nad niszczeniem czy przekierowaniem obiektów zagrażających Ziemi. Temat asteroid zagrażających Ziemi i obrony przed nimi poruszaliśmy już wielokrotnie w tekstach Szef NASA zaleca modlitwę, Znamy już ponad 10 000 NEO, NASA planuje test technologii ochrony Ziemi przed asteroidami, Obronienie Ziemi będzie trudniejsze, niż sądziliśmy czy Źle szacujemy ryzyko kosmicznej katastrofy? « powrót do artykułu
  5. W Lion Country Safari na Florydzie od uderzenia pioruna zginęły 2 żyrafy: samiec i samica. Poniosły śmierć na miejscu. Przyczynę zgonu potwierdziła sekcja zwłok. Park poinformował o zdarzeniu na swoim profilu na Facebooku. Lily i Jioni byli na pastwisku, gdy 6 tygodni nagle rozpoczęła się duża burza. Wyniki sekcji zwłok potwierdziły, że żyrafy zginęły od uderzenia pioruna i że śmierć była natychmiastowa. Przedstawiciele parku podkreślają, że na wieloakrowym wybiegu zwierzęta mają do dyspozycji sporo kryjówek. Jeśli jednak nie chcą się tam udać, niewiele możemy zrobić - powiedziała w wywiadzie udzielonym lokalnej telewizji WPTV rzeczniczka Haley Passeser. Po śmierci żyraf w Lion Country Safari pozostało jeszcze stado złożone z 18 osobników. « powrót do artykułu
  6. W 2008 roku w pobliżu szkockiej miejscowości Ullapool znaleziono pierwsze dowody na upadek wielkiego meteorytu. Na podstawie warstw materiału pochodzącego z uderzenia stwierdzono, że wydarzenie miało miejsce przed 1,2 miliardami laty w pobliżu wybrzeża. Teraz na łamach Journal of Geological Society zespół z Oxford University, na czele którego stał doktor Ken Amor, poinformowali o znalezieniu krateru. Odkryto go w odległości 15-20 kilometrów na zachód od szkockiego wybrzeża. Krater jest zagrzebany w Minch Basin pod młodszymi skałami. "Materiał pochodzący z uderzeń wielkich meteorytów rzadko się zachowuje, gdyż ulega szybkiej erozji. Tym bardziej ekscytujące to odkrycie. Szczęśliwym przypadkiem meteoryt spadł na dolinę ryftową i szybko został przykryty świeżymi osadami, dzięki czemu krater przetrwał. Naszym następnym celem badawczym będzie przeprowadzenie szczegółowych badań geofizycznych", mówi Amor. Miejsce upadku meteorytu udało się określić dzięki szczegółowym obserwacjom terenu, rozkładowi rozrzuconego materiału oraz orientacji cząstek magnetycznych. Przed 1,2 miliardami lat większość ziemskich organizmów żywych przebywała w oceanach, na lądach nie było żadnych roślin. W tym czasie Szkocja znajdowała się w pobliżu równika i panował w niej półpustynny klimat. Krajobraz nieco przypominał marsjański z płynącą po powierzchni wodą. Szacuje się, że do kolizji Ziemi z meteorytami o średnicy około 1 kilometra może dochodzić raz na 100 000 do 1 miliona lat. Szacunki są bardzo niepewne, gdyż z powodu szybkiej erozji kraterów uderzeniowych nie wiemy, do ilu takich zderzeń doszło w przeszłości. « powrót do artykułu
  7. Twórcy barrigones - rzeźb przedstawiających otyłe figury ludzkie - z rejonów pacyficznego wybrzeża dzisiejszej Gwatemali korzystali z głazów, w pobliżu których uderzył piorun. Za pomocą naturalnych magnesów określali położenie anomalii magnetycznych i tam umieszczali czoło, policzki i pępek postaci. Naukowcy, w tym geolog Roger Fu z Uniwersytetu Harvarda, badali za pomocą przenośnego urządzenia namagnesowanie 11 barrigones ze stanowiska Monte Alto (datują się one na 2. połowę 1. tysiąclecia przed naszą erą). Autorzy artykułu z Journal of Archaeological Science uważają, że rzeźbiarze sprzed ~2 tys. lat przybliżali do głazów kawałek magnetytu i patrzyli, w którym miejscu zostanie on odepchnięty. Barrigones przedstawiały zmarłych, ale nadal poważanych i czczonych przodków znamienitych rodów. Julia Guernsey, historyk sztuki z Uniwersytetu Teksańskiego w Austin, uważa, że w szybko rozrastających się społecznościach rzeźby odpychające namagnesowane obiekty były postrzegane jako manifestacja obecności i autorytetu zmarłych. Na różnych stanowiskach w Mezoameryce znaleziono co najmniej 127 barrigones. Zespół Fu zbadał 11 z nich - 6 głów i 5 całych "ciał". Przenośne czujniki potwierdziły doniesienia z 1997 r., że w okolicy prawej skroni i policzka 3 głów z Monte Alto występują sygnały magnetyczne. Skany pozwoliły określić powierzchnię i morfologię anomalii magnetycznych. W ten sposób wykazano, że ich położenie odpowiada umiejscowieniu specyficznych części ciała. « powrót do artykułu
×
×
  • Dodaj nową pozycję...