Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów ' tarcie' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 1 wynik

  1. Z im większą prędkością dwie powierzchnie metalowe przesuwają się po sobie, tym bardziej się zużywają. Okazało się jednak, że przy bardzo dużych prędkościach, porównywalnych z prędkością pocisku wystrzeliwanego pistoletu, proces ten ulega odwróceniu. Szybszy ruch powierzchni prowadzi do ich wolniejszego zużycia. Gdy dwie metalowe powierzchnie ześlizgują się po sobie, zachodzi wiele złożonych procesów. Krystaliczne regiony, z których zbudowane są metale, mogą ulegać deformacjom, pęknięciom, mogą skręcić się czy nawet zlać. Występuje tarcie i niszczenie powierzchni. Ten niepożądany proces powoduje, że urządzenia się zużywają oraz ulegają awariom. Dlatego też ważne jest, byśmy lepiej zrozumieli zachodzące wówczas procesy. Podczas badań nad tym zjawiskiem naukowcy z Uniwersytetu Technicznego w Wiedniu (TU Wien) i Austriackiego Centrum Doskonałości Tribologii dokonali zaskakującego, sprzecznego z intuicją odkrycia. W przeszłości tarcie mogliśmy badać tylko w czasie eksperymentów. W ostatnich latach dysponujemy superkomputerami na tyle potężnymi, że możemy w skali atomowej modelować bardzo złożone procesy zachodzące na powierzchniach materiałów, mówi Stefan Eder z TU Wien. Naukowcy modelowali różne rodzaje metalowych stopów. Nie były to doskonałe kryształy, ale powierzchnie bliskie rzeczywistości, złożone niedoskonałe struktury krystaliczne. To bardzo ważne, gdyż te wszystkie niedoskonałości decydują o tarciu i zużywaniu się powierzchni. Gdybyśmy symulowali doskonałe powierzchnie miałoby to niewiele wspólnego z rzeczywistością, dodaje Eder. Z badań wynika, że przy dość niskich prędkościach, rzędu 10-20 metrów na sekundę, zużycie materiału jest niewielkie. Zmienia się tylko zewnętrzna jego warstwa, warstwy głębiej położone pozostają nietknięte. Przy prędkości 80–100 m/s zużycie materiału, jak można się tego spodziewać, wzrasta. Stopniowo wchodzimy tutaj w taki zakres, gdzie metal zaczyna zachowywać się jak miód czy masło orzechowe, wyjaśnia Eder. Głębiej położone warstwy materiału są ciągnięte w kierunku ruchu metalu przesuwającego się po powierzchni, dochodzi do całkowitej reorganizacji mikrostruktury. Później zaś na badaczy czekała olbrzymia niespodzianka. Przy prędkości ponad 300 m/s zużycie ocierających się o siebie materiałów spada. Mikrostruktury znajdujące się bezpośrednio pod powierzchnią, które przy średnich prędkościach były całkowicie niszczone, pozostają w większości nietknięte. To zaskakujące dla nas i wszystkich zajmujących się tribologią. Jednak gdy przejrzeliśmy literaturę fachową okazało się, że obserwowano to zjawisko podczas eksperymentów. Jednak nie jest ono powszechnie znane, gdyż eksperymentalnie bardzo rzadko uzyskuje się tak duże prędkości, dodaje Eder. Wcześniejsi eksperymentatorzy nie potrafili wyjaśnić, dlaczego tak się dzieje. Dopiero teraz, dzięki symulacjom komputerowym, można pokusić się o bardziej dokładny opis. Analiza danych komputerowych wykazała, że przy bardzo wysokich prędkościach w wyniku tarcia pojawia się duża ilość ciepła. Jednak ciepło to jest nierównomiernie rozłożone. Gdy dwa metale przesuwają się po sobie z prędkością setek metrów na sekundę, w niektórych miejscach rozgrzewają się do tysięcy stopni Celsjusza. Jednak pomiędzy tymi wysokotemperaturowymi łatami znajdują się znacznie chłodniejsze obszary. W wyniku tego niewielkie części powierzchni topią się i w ułamku sekundy ponownie krystalizują. Dochodzi więc do dramatycznych zmian w zewnętrznej warstwie metalu, ale to właśnie te zmiany chronią głębsze warstwy. Głębiej położone struktury krystaliczne pozostają nietknięte. Zjawisko to, o którym w środowisku specjalistów niewiele wiadomo, zachodzi w przypadku różnych materiałów. W przyszłości trzeba będzie zbadać, czy ma ono również miejsce przy przejściu z dużych do ekstremalnych prędkości, stwierdza Eder. Bardzo szybkie przesuwanie się powierzchni metalicznych względem siebie ma miejsce np. w łożyskach czy systemach napędowych samochodów elektrycznych czy też podczas polerowania powierzchni. Szczegóły badań zostały opublikowane na łamach Applied Materials Today. « powrót do artykułu
×
×
  • Dodaj nową pozycję...