Znajdź zawartość
Wyświetlanie wyników dla tagów ' proteina' .
Znaleziono 15 wyników
-
Wszystkie nowotwory należą do jednej z dwóch kategorii, informują badacze z Sinai Health. Odkrycie to może pozwolić na opracowanie nowych strategii walki z najbardziej agresywnymi i niepoddającymi się leczeniu chorobami nowotworowymi. Olbrzymie zróżnicowanie nowotworów powoduje, że bardzo trudno znaleźć jest skuteczne formy leczenia tych chorób. Naukowcy z Lunenfeld-Tanenbaum Research Institute (LTRI), będącego częścią Sinai Health, donoszą na łamach Cancer Cell, że nowotwory można podzielić na zaledwie dwie kategorie, w zależności od ekspresji bądź braku ekspresji białka YAP (Yes-associated protein). Przeprowadzone przez nich badania wykazały bowiem, że we wszystkich nowotworach mamy do czynienia albo z ekspresją, albo wyciszeniem białka YAP. W zależności, do której z tych grup należy dany nowotwór, różnie reaguje on na leczenie. Białka YAP są niezwykle ważnym elementem szlaku sygnałowego Hippo. Szlak ten odgrywa istotną rolę w kontroli wzrostu narządów u zwierząt, regulując procesy proliferacji i apoptozy komórek. YAP nie tylko jest włączone bądź wyłączone, ale ma też przeciwne pro- lub antynowotworowe działanie, zależnie od kontekstu. Nowotwory z YAPon potrzebują YAP by się rozwijać i przetrwać, z kolei nowotwory YAPoff przestają się rozwijać po aktywacji YAP, mówi Rod Bremner. Naukowcy przypominają, że wiele nowotworów YAPoff to choroby wysoce śmiertelne. Naukowcy wykazali też, że niektóre nowotwory, jak nowotwór prostaty czy płuc, potrafią przełączyć się pomiędzy stanem YAPon a YAPoff by zyskać oporność na leczenie. Komórki nowotworowe, hodowane w szalkach laboratoryjnych, albo unoszą się w płynie, albo przyczepiają się do szalki. Uczeni z Sinai Health odkryli, że to YAP decyduje o pływalności komórek. Wszystkie komórki nowotworowe YAPoff unoszą się, a wszystkie YAPon przyczepiają się. Nie od dzisiaj zaś wiemy, że zdolność komórek do adhezji decyduje o ich oporności na leczenie. Odkryta przez nas prosta dwuwartościowa klasyfikacja nowotworów może pomóc w opracowaniu terapii, które są skuteczne dla wszystkich chorób należących do klas YAPoff i YAPon, stwierdził współautor badań Joel Pearson Uczony zauważył też, że skoro nowotwory mogą przełączać się pomiędzy tymi stanami, by uniknąć leczenia, opracowanie metod kontrolowania stanu YAPoff i YAPon spowoduje, że będziemy mogli powstrzymać nowotwór przed przełączeniem się w stan, w którym może zyskać oporność na leczenia. « powrót do artykułu
-
Proteina, która chroni kobiety przed otyłością
KopalniaWiedzy.pl dodał temat w dziale Zdrowie i uroda
Badania przeprowadzone na modelach mysich, u których poprzez dietę wysokotłuszczową wywołano otyłość wykazały, że samice, w przeciwieństwie do samców, są lepiej chronione przed otyłością i towarzyszącym jej stanem zapalnym, gdyż w ich organizmach dochodzi do większej ekspresji proteiny RELM-α. Stwierdziliśmy, że komórki układu odpornościowego oraz RELM-α są odpowiedzialne za międzypłciowe różnice w reakcji układu odpornościowego na otyłość, mówi profesor Meera G. Nair z Uniwersytetu Kalifornijskiego w Riverside. Jest ona współautorką badań prowadzonych wraz z profesor Djurdjicą Coss. Do białek z rodziny RELM (resistin-like molecule), obok rezystyny, należą też RELM-α i RELM-β. Do wysokiej ekspresji RELM zachodzi w czasie infekcji i stanów zapalnych. Gdy tylko u myszy pojawia się infekcja, błyskawicznie dochodzi do uruchomienia produkcji RELM-α, które ma chronić tkanki. RELM-α reguluje działanie dwóch typów komórek układu odpornościowego: przeciwzapalnych makrofagów i eozynofili. Autorki badań zaobserwowały, że samce myszy wykazywały niższą ekspresję RELM-α, miały mniej eozynofili, a więcej prozapalnych makrofagów, które wspomagały otyłość. Gdy uczone usunęły RELM-α u samic odkryły, że nie były one chronione przed otyłością, miały mniej oezynofili, a więcej makrofagów – podobnie jak samce. Mogłyśmy jednak zredukować otyłość u samic myszy podając im eozynofile lub RELM-α to sugeruje, że mogą być one obiecującymi środkami terapeutycznymi, mówi Nair. Niedobór RELM-α miał duży wpływ na samców, ale wciąż był on mniejszy niż na samice. Prawdopodobnie dlatego, że samice mają wyższy poziom RELM-α, zatem niedobory bardziej wpływają na ich organizm. Z naszych badań płynie wniosek, że w chorobach metabolicznych, takich jak otyłość, konieczne jest branie pod uwagę różnic międzypłciowych, stwierdza Coss. Najważniejsze jednak jest odkrycie nieznanej dotychczas, zależnej od płci, roli RELM-α w modulowaniu reakcji metabolicznej i zapalnej na indukowaną dietą otyłość. Istnieje „oś RELM-α-eozynofile-makrofagi”, która chroni kobiety przed otyłością i stanem zapalnym wywoływanymi dietą. Wzmocnienie tego szlaku może pomóc w walce z otyłością, dodaje Nair. « powrót do artykułu-
- otyłość
- stan zapalny
-
(i 2 więcej)
Oznaczone tagami:
-
Białko z pajęczej sieci może pomóc w walce z nowotworami
KopalniaWiedzy.pl dodał temat w dziale Medycyna
Proteina p53 zapobiega podziałom komórek ze zmutowanym lub uszkodzonym DNA, chroniąc nas w ten sposób przed rozwojem guzów nowotworowych. Problem jednak w tym, że p53 bardzo szybko rozpada się w komórkach. Naukowcy ze szwedzkiego Karolinska Institutet odkryli sposób na ustabilizowanie p53 poprzez dodanie do niej proteiny z nici pajęczej. Nieprawidłowe białka to poważny problem w biologii strukturalnej. Znaczącym przykładem jest tutaj supresor nowotworowy p53, którego niewielka ekspresja i niska stabilność stanowią przeszkodę w rozwoju leków przeciwnowotworowych, czytamy w artykule A “spindle and thread” mechanism unblocks p53 translation by modulating N-terminal disorder opublikowanym na łamach pisma Structure. Komórki wytwarzają niewiele p53, a proteina bardzo szybko się w nich rozpada. Zainspirowało nas to, jak natura tworzy stabilne proteiny i wykorzystaliśmy proteiny z pajęczej sieci do ustabilizowania p53. Nić pajęcza zawiera długie łańcuchy wysoko stabilnych protein i jest jednym z najbardziej wytrzymałych naturalnych polimerów, stwierdził jeden z autorów badań, Michael Landreh. W ramach swoich eksperymentów uczeni dodali do p53 niewielki fragment proteiny z pajęczej sieci. Gdy tylko go wprowadzili, zauważyli, że komórki zaczęły wytwarzać duże ilości p53. Za pomocą mikroskopii elektronowej, spektrometrii mas i symulacji komputerowych naukowcy wykazali, że pajęcza proteina ustabilizowała p53. Stworzenie w komórce bardziej stabilnej odmiany p53 to obiecująca metoda walki z nowotworami. Widzimy, że warto podążać tą drogą. Mamy nadzieję, że w przyszłości uda się opracować bazującą na mRNA szczepionkę antynowotworową, ale zanim to zrobimy, musimy dowiedzieć się, jak proteina zachowuje się w komórce i czy jej duże ilości nie będą toksyczne, mówi współautor badań profesor David Lane. Uczony jest jednym z odkrywców proteiny p53. « powrót do artykułu -
Klucz do apetytu i otyłości u myszy, proteina XRN1
KopalniaWiedzy.pl dodał temat w dziale Zdrowie i uroda
Proteina XRN1 odgrywa kluczową rolę w regulowaniu apetytu i metabolizmu przez mózg, informują badacze z Okinawa Institute of Science and Technology Graduate University. U myszy utrata tego białka z przodomózgowia doprowadziła do pojawienia się niepohamowanego apetytu i otyłości, czytamy na łamach iScience. Otyłość powodowana jest przez nierównowagę pomiędzy ilością przyjmowanego pokarmu a wydatkowaniem energii. Wciąż jednak słabo rozumiemy, jak apetyt i metabolizm są regulowane przez komunikację pomiędzy mózgiem a innymi częściami ciała, jak trzustka czy tkanka tłuszczowa, mówi doktor Akiko Yanagiya. W ramach badań naukowcy stworzyli mysz, w której przodomózgowiu nie pojawiła się proteina XRN1. W tym regionie mózgu znajduje się m.in. podwzgórze, niewielki obszar odpowiedzialny za uwalnianie hormonów regulujących sen, temperaturę ciała, pragnienie i głód. Naukowcy zauważyli, że w wieku 6 tygodni ich myszy zaczęły gwałtownie przybierać na wadze i w wieku 12 tygodni były już otyłe. Obserwując zachowanie zwierząt uczeni stwierdzili, że myszy pozbawione XRN1 jadły niemal dwukrotnie więcej niż grupa kontrolna. To była prawdziwa niespodzianka. Gdy po raz pierwszy pozbawiliśmy mózg XRN1 nie wiedzieliśmy, co odkryjemy. Tak drastyczny wzrost apetytu był czymś niespodziewanym, informuje doktor Shohei Takaoka. Japończycy chcieli dowiedzieć się, co powoduje, że myszy tak dużo jedzą. Zmierzyli więc poziom leptyny we krwi. To hormon, który tłumi uczucie głodu. W porównaniu z grupą kontrolną był on znacząco podwyższony. Normalnie powinno to zniwelować uczucie głodu i powstrzymać myszy przed jedzeniem. Jednak zwierzęta pozbawione XRN1 nie reagowały na leptynę. Naukowcy odkryli też, że 5-tygodniowe myszy były oporne na insulinę, co w konsekwencji może prowadzić do cukrzycy. W miarę upływu czasu u myszy tych poziom glukozy i insuliny znacząco rósł wraz ze wzrostem leptyny. Sądzimy, że poziom glukozy oraz insuliny zwiększał się z powodu braku reakcji na leptynę. Oporność na leptynę powodowała, że myszy ciągle jadły, glukoza we krwi utrzymywała się na wysokim poziomie, a przez to wzrastała też ilość insuliny, mówi Yanagiya. Sprawdzano też, czy otyłość u myszy mogła być spowodowana mniejszą aktywnością fizyczną. Zwierzęta umieszczono w specjalnych klatkach, gdzie mierzono poziom zużywanego tlenu, co służyło jaki wskaźnik tempa metabolizmu. Okazało się, że u 6-tygodniowych myszy nie było żadnej różnicy w wydatkowaniu energii pomiędzy grupą badaną (bez XRN1) a grupą kontrolną. jednak uczeni zauważyli coś bardzo zaskakującego. Otóż myszy bez XRN1 używały węglowodanów jako głównego źródła energii. Natomiast myszy z grupy kontrolnej były w stanie przełączać się pomiędzy wykorzystywaniem węglowodanów w nocy – kiedy to były bardziej aktywne – a wykorzystywaniem zgromadzonego w ciele tłuszczu w dzień, w czasie mniejszej aktywności. Z jakiegoś powodu myszy pozbawione XRN1 nie wykorzystywały tłuszczu tak efektywnie, jak grupa kontrolna. Nie wiemy, dlaczego tak się dzieje, przyznaje doktor Yanagiya. Gdy zaś myszy te osiągnęły 12 tygodni życia, ich wydatki energetyczne zmniejszyły się w porównaniu z grupą kontrolną. Jednak naukowcy sądzą, że było to spowodowane otyłością, a nie na odwrót. Myślimy, że przyczyną otyłości było tutaj przejadanie się w wyniku oporności na leptynę, dodaje uczony. XRN1 odgrywa kluczową rolę w aktywności genów, gdyż jest zaangażowana na ostatnim etapie degradacji mRNA. Naukowcy odkryli, że u otyłych myszy poziom mRNA wykorzystywanego do wytwarzania proteiny AgRP, jednego z najsilniejszych stymulatorów apetytu, był podwyższony, co prowadziło też do podwyższonego poziomu AgRP. W tej chwili to tylko spekulacja, ale sądzimy, że zwiększony poziom tej proteiny i nieprawidłowa aktywacja wytwarzających ją neuronów może być przyczyną oporności na leptynę u myszy. W normalnych warunkach leptyna zmniejsza aktywność neuronów AgRP, ale jeśli utrata XRN1 powoduje, że neurony pozostają wysoce aktywne, to może to zagłuszać sygnały przekazywane przez leptynę, wyjaśniają naukowcy. « powrót do artykułu -
AlphaFold, sieć sztucznej inteligencji zbudowana w oparciu o słynny DeepMind dokonała olbrzymiego kroku w kierunku poradzenia sobie z jednym z najpoważniejszych wyzwań nauk biologicznych – określeniem kształtu białek z sekwencji ich aminokwasów. To zmieni medycynę, zmieni bioinżynierię. Zmieni wszystko, mówi Andrei Lupas, biolog ewolucyjny z Instytutu Biologii Rozwojowej im. Maxa Plancka w Tybindze, który oceniał możliwości podobnych programów. Lupas dobrze zna AlphaFold. Program pomógł określić mu strukturę białka, z którym jego laboratorium nie mogło sobie poradzić od dekady. Możliwość określenia prawidłowej struktury białek pozwoli zarówno na lepsze zrozumienie życia, jak i na szybsze opracowywanie supernowoczesnych leków. Obecnie znamy 200 milionów białek, ale w pełni rozumiemy strukturę i funkcję niewielkiego ułamka z nich. Jednak nawet opisanie tej niewielkiej liczby dobrze poznanych białek zajęło nauce wiele lat, a do ich badań konieczny był wyspecjalizowany sprzęt warty miliony dolarów. AlphaFold pokonał około 100 innych programów, które wraz z nim stanęły do zawodów CASP (Critical Assesment of Structure Prediction). Zawody odbywają się co dwa lata, a AlphaFold wystartował w nich po raz pierwszy w 2018 roku i od razu trafił na szczyt klasyfikacji. Jednak w tym roku jego możliwości zaskoczyły specjalistów. Nie dość, że znacząco wyprzedził konkurencję, to jego osiągnięcia były tak imponujące, iż mogą zwiastować rewolucję w biologii. W niektórych przypadkach wyniki uzyskane za pomocą AlphaFold nie różniły się niczym od tych osiąganych za pomocą metod eksperymentalnych stanowiących złoty standard, takich jak krystalografia rentgenowska czy mikroskopia krioelektronowa. Naukowcy mówią, że AlphaFold nie zastąpi – przynajmniej na razie – tych metod, ale już teraz pozwoli na badanie struktur biologicznych w zupełnie nowy sposób. Białka to podstawowe budulce organizmów żywych. Odpowiedzialne są za większość procesów zachodzących w komórkach. O tym, jak działają i co robią, decyduje ich struktura 3D. Odpowiedni kształt przyjmują one bez żadnej instrukcji, kierowane jedynie prawami fizyki. Od dziesięcioleci główną metodą określania kształtów białek były metody eksperymentalne. Badania tego problemu rozpoczęto w latach 50. ubiegłego wieku korzystając z metod krystalografii rentgenowskiej. W ostatniej dekadzie preferowanym narzędziem badawczym stała się mikroskopia krioelektronowa. W latach 80. i 90. zaczęto prace nad wykorzystaniem komputerów do określania kształtu protein. Jednak nie szło to zbyt dobrze. Metody, które sprawdzały się przy jednych białkach nie zdawały egzaminu przy badaniu innych. John Moult, biolog obliczeniowy z University of Maryland, wraz z kolegami wpadł na pomysł zorganizowania CASP, zawodów, które miały uporządkować prace nad wykorzystaniem komputerów do badania kształtów białek. W ramach tych zawodów przed zespołami naukowymi stawia się zadanie określenia właściwej struktury protein, których to struktura została wcześniej określona metodami eksperymentalnymi, ale wyniki tych badań nie zostały jeszcze upublicznione. Moult mówi, że eksperyment ten – uczony unika słowa „zawody” – znakomicie przysłużył się badaniom na tym polu, pozwolił na uporządkowanie metod i odrzucenie wielu nieprawdziwych twierdzeń. Tutaj naprawdę możemy przekonać się, która metoda jest obiecująca, która działa, a którą należy odrzucić, stwierdza. W 2018 roku na CASP13 po raz pierwszy pojawił się AlphaFold. To algorytm sztucznej inteligencji bazujący na słynnym DeepMind, który pokonał mistrza go Lee Sedola, przełamując kolejną ważną barierę dla sztucznej inteligencji. Już w 2018 roku AlphaFold zyskał sobie uznanie specjalistów. Jednak wówczas korzystał z bardzo podobnych technik, co inne programy. Najpierw wykorzystywał metody głębokiego uczenia się oraz dane strukturalne i genetyczne do określenia odległości pomiędzy parami aminokwasów w proteinie, a następnie – już bez użycia SI – wypracowywał „konsensus” dotyczący ostatecznego wyglądu proteiny. Twórcy AlphaFolda próbowali to udoskonalać korzystając z takiego właśnie modelu, ale natrafili na przeszkody nie do pokonania. Zmienili więc taktykę i stworzyli sieć sztucznej inteligencji, która wykorzystywała też informacje o fizycznych i geometrycznych ograniczeniach w zawijaniu białek. Ponadto nowy model zamiast przewidywać zależności pomiędzy poszczególnymi aminokwasami miał do zrobienia coś znacznie trudniejszego – przewidzieć ostateczny kształt białka. CASP trwa kilka miesięcy. Biorące w nim udział zespoły regularnie otrzymują niezbędne informacje o proteinach lub ich fragmentach – w sumie jest ich około 100 – i mają określić ich strukturę. Wyniki pracy tych zespołów oceniają niezależni eksperci, którzy sprawdzają, na ile wyniki uzyskane na komputerach są zgodne z rzeczywistą strukturą białek określoną wcześniej metodami eksperymentalnymi. Oceniający nie wiedzą, czyją pracę oceniają. Wyniki są anonimizowane. Dane z AlphaFold były w bieżącym roku opisane jako „grupa 427”. Jednak niektóre z przewidywań dostarczonych przez tę grupę były tak dokładne, że wielu sędziów domyśliło się, kto jest autorem pracy. Zgadłem, że to AlphaFold. Większość zgadła, mówi Lupas. AlphaFold nie sprawował się równo. Raz radził sobie lepiej, raz gorzej. Ale niemal 2/3 jego przewidywań dorównywało wynikom uzyskanym metodami eksperymentalnymi. Czasami nie było wiadomo, czy różnica wynika z niedoskonałości AlphaFold czy metod eksperymentalnych. Jak mówi Moult, największą różnicę pomiędzy AlphaFold a metodami eksperymentalnymi było widać, gdy rzeczywisty wygląd proteiny określano za pomocą rezonansu jądrowego. Jednak różnica ta może wynikać ze sposobu obróbki surowych danych uzyskanych tą metodą. AlphaFold słabo sobie radził też w określaniu indywidualnych struktur w grupach protein, gdzie kształt białka mógł być zaburzany obecnością innego białka. Ogólnie rzecz biorąc średnia wydajność modeli biorących udział w tegorocznym CASP była lepsza niż przed dwoma laty, a za większość postępu odpowiadał AlphaFold. Na przykład tam, gdzie proteiny określano jako średnio trudne najlepsze modele uzyskiwały 75 na 100 możliwych punktów, a AlphaFold uzyskał tam 90 punktów. Przekroczenie granicy 90 punktów uznaje się za dorównanie metodom eksperymentalnym. Mohammed AlQuraishi, biolog obliczeniowy z Columbia University, który też brał udział w CASP chwali osiągnięcie AlphaFold: myślę, że trzeba uczciwie powiedzieć, iż osiągnięcie to wstrząśnie dziedziną badania struktur białek. Sądzę, że wielu specjalistów przestanie się tym zajmować, gdyż główny problem został rozwiązany. To olbrzymi przełom, jedno z najważniejszych osiągnięć naukowych, jakie widziałem w swoim życiu. O tym, jak wielkie możliwości ma AlphaFold i jak olbrzymia rewolucja może nadchodzić niech świadczy przykład badań, jakie prowadził zespół Andreia Lupasa. Niemcy od dawna próbowali określić strukturę białka pewnej bakterii. Za pomocą krystalografii rentgenowskiej uzyskali surowe dane, jednak ich przełożenie na odpowiednią strukturę wymagało pewnych informacji o kształcie proteiny. Wszelkie próby rozwiązania zagadnienia spaliły na panewce. Spędziliśmy dekadę próbując wszystkiego. Model opracowany przez group 427 dostarczył nam tę strukturę w ciągu pół godziny, mówi Lupas. Demis Hassabis, współzałożyciel i szef firmy DeepMind, która obecnie należy do Google'a, mówi, że jego firma dopiero zaczyna rozumieć, czego biolodzy chcą od AlphaFold. AlphaFold już zresztą przydaje się w praktyce. Na początku 2020 roku algorytm opisał strukturę kilku białek wirusa SARS-CoV-2. Później okazało się, że przewidywania dotyczące białka Orf3a zgadzają się z wynikami uzyskanymi eksperymentalnie. Rozpowszechnienie się AlphaFold raczej nie doprowadzi do zamknięcia laboratoriów. Jednak dzięki niemu do określenia struktury protein wystarczą gorszej jakości, a więc i łatwiejsze do uzyskania, dane. Możemy się też spodziewać olbrzymiej liczby odkryć, gdyż już w tej chwili dysponujemy olbrzymią liczbą danych, które program będzie mógł wykorzystać. Dodatkową korzyścią jest fakt, że będzie można prowadzić bardziej zaawansowane badania. Nowa generacja biologów molekularnych będzie mogła zadać bardziej złożone pytania. Będą mogli skupić się bardziej na myśleniu niż na prowadzeniu eksperymentów, mówi Lupas. Naukowcy mają nadzieję, że dzięki AlphaFold poznamy funkcje tysięcy białek tworzących ludzkie DNA, a to z kolei pozwoli nam poznać przyczyny wielu chorób. « powrót do artykułu
-
To prawdziwy przełom. Nie ma już więcej rekordów do pobicia. Padła ostatnia bariera rozdzielczości, mówi Holger Stark z Instytutu Fizyki Biochemicznej im. Maxa Plancka w Göttingen. Stał on na czele jednej z dwóch grup badawczych, które poinformowały o pierwszym w historii zobrazowaniu poszczególnych atomów w proteinie za pomocą mikroskopii krioelektronowej (cryo-EM). Osiągnięcie to pokazuje, jak wielkie możliwością stoją przed mikroskopią krioelektronową i umacniają jej pozycję jako narzędzia do mapowania trójwymiarowych kształtów protein. Takie narzędzia pozwalają na dokładne zbadanie struktur białek, a co za tym idzie, lepsze zrozumienie ich funkcjonowania, co z kolei przełoży się na stworzenie lepszych leków o mniejszej liczbie skutków ubocznych. Drugą grupą badawczą, które udało się zobrazować atomy w proteinach jest zespół pracujący pod kierunkiem Sjorsa Scheresa i Radu Aricescu z Medical Reasearch Council Laboratory of Molecular Biology (MRC-LMB) w Cambridge w Wielkiej Brytanii. Prace Niemców i Brytyjczyków chwali John Rubinstein, biolog z University of Toronto. Rozdzielczość atomowa to prawdziwy przełom, mówi i dodaje, że pozostało jeszcze kilka problemów do rozwiązania, jak np. obrazowanie protein o małej elastyczności. Prace te pokazują, dokąd możemy dojść, jeśli rozwiążemy te problemy, stwierdza. Mikroskopia krioelektronowa do licząca sobie dziesiątki lat technika, w której obrazuje się kształt zamrożonych próbek ostrzeliwując je elektronami i rejestrując ich odbicia. Około roku 2013 rozpoczęła się prawdziwa rewolucja. Dzięki coraz doskonalszym technikom wykrywania odbitych elektronów oraz coraz lepszemu oprogramowaniu do analizy, zaczęto uzyskiwać coraz lepszej jakości obraz. Z czasem obraz uzyskany z cryo-EM niemal dorównywał jakości obrazowi uzyskiwanemu z rentgenografii strukturalnej. Niemal, więc naukowcy nadal musieli polegać na rentgenografii. Technika ta pozwala na badanie skrystalizowanych protein. Wykonanie analizy wymaga najpierw uzyskania możliwie jak najbardziej regularnego i doskonałego monokryształu badanego związku. Uzyskanie takich kryształów jest czasochłonne. Może trwać wiele miesięcy, a nawet lat. Ponadto wiele protein interesujących z punktu widzenia medycyny nie tworzy kryształów, które można by w ten sposób badać. Croy-EM ma tę zaletę, że wymaga jedynie umieszczenia proteiny w oczyszczonym roztworze. Granicą, poza którą można mówić o rozdzielczości atomowej jest około 1,2 angstrema (1,2x10-10 metra). Oba zespoły naukowe, niemiecki i brytyjski, pracowały z apoferrytyną. To niezwykle stabilna proteina, za pomocą której testuje się cryo-EM. Poprzedni rekord obrazowania tej proteiny wynosił 1,54 angstrema. Oba zespoły wykorzystały nieco inne techniki, osiągając podobne rezultaty. Niemcy uzyskali rozdzielczość 1,25 A, Brytyjczycy zaś 1,2 A. Stark ocenia, że połączenie obu technik może pozwolić na zwiększenie rozdzielczości do około 1 angstrema, ale to praktycznie nieprzekraczalna granica dla mikroskopii krioelektronowej. Obszar poniżej 1 angstroma jest niemal nieosiągalny dla cro-EM. Uzyskanie takiej rozdzielczości za pomocą najnowocześniejszych dostępnych obecnie urządzeń wymagałoby setek lat rejestracji danych, niewyobrażalnie wielkich mocy obliczeniowych i możliwości przechowywania danych, mówi Stark. Scheres i Aricescu przetestowali też swoją technikę na receptorze GABAA. Jeszcze w ubiegłym roku udało im się obrazować ją w rozdzielczości 2,5 angstrema. Tym razem osiągnęli 1,7 A, chociaż w niektórych fragmentach obraz był jeszcze dokładniejszy. To było jak usunięcie przesłony z oczu. Przy tych rozdzielczościach każde pół angstroma otwiera zupełnie nowy wszechświat. « powrót do artykułu
- 2 odpowiedzi
-
Naukowcy z dwóch czołowych instytucji naukowych świata – MIT i Uniwersytetu Harvarda – zidentyfikowali konkretne typy komórek w nosie, płucach i jelitach, które są celem ataku koronawirusa SARS-CoV-2. Analiza baz danych RNA pozwoliła uczonym określić, w których z komórek naszego organizmu dochodzi do ekspresji dwóch protein potrzebnych wirusowych do zainfekowania komórki. Odkrycie może pomóc w opracowaniu nowych i przystosowaniu istniejących leków do walki z COVID-19. Niemal od samego początku epidemii wiemy, że koronawirus SARS-CoV-2 przyłącza się, za pomocą białka strukturalnego S, do obecnego na powierzchni ludzkich komórek receptora ACE2 (angiotensin-converting enzyme 2 – konwertaza angiotensyny 2). Po przyłączeniu inna proteina, TMPRSS2, pomaga aktywować białko S, umożliwiając wirusowi wniknięcie do komórki. Gdy tylko rola tych protein została biochemiczne potwierdzona, zaczęliśmy przeszukiwać bazy danych, by stwierdzić, gdzie występują geny odpowiedzialne za ekspresję tych protein, mówi jeden z autorów badań, Jose Ordovas-Montanes. Wiele z analizowanych danych pochodziło z laboratoriów skupionych wokół projektu Human Cell Atlas, którego celem jest skatalogowanie wzorców aktywności genów dla każdego rodzaju komórek obecnego w ludzkim organizmie. Naukowcy skupili się na analizie komórek z nosa, płuc i jelit, gdyż dotychczasowe dowody wskazują, że wirus może zainfekować każdy z tych narządów. Następnie uzyskane wyniki porównali z danymi z organów, które nie są infekowane przez SARS-CoV-2. Okazało się, że w jamie nosowej komórkami, w których dochodzi do ekspresji RNA zarówno dla ACE2 jak i TMPRSS2, są komórki kubkowe. To właśnie one wydzielają śluz. I są drugimi co do częstotliwości występowania komórkami nabłonka dróg oddechowych. Są one też obecne w jelicie cienkim, jelicie grubym i spojówce powieki górnej. Z kolei w płucach ekspresja RNA dla obu protein potrzebnych koronawirusowi do zaatakowania komórek zachodzi w pneumocytach typu 2. To komórki wyścielające pęcherzyki płucne i odpowiedzialne za ich otwarcie. Jeśli zaś chodzi u jelita, to do największej ekspresji RNA dla ACE2 i TMPRSS2 dochodzi w enterocytach, które – obok komórek kubkowych i komórek endokrynowych – budują nabłonek błony śluzowej jelita cienkiego. Być może to nie wszystko, ale z pewnością mamy teraz znacznie bardziej jasny obraz niż wcześniej. Możemy teraz stwierdzić, że w wymienionych typach komórek dochodzi do ekspresji obu tych typów receptorów, dodaje Ordovas-Montanes. Podczas swoich badań naukowcy zauważyli jeszcze jedną zaskakującą rzecz. Okazało się, że ekspresja genu ACE2 jest prawdopodobnie skorelowana z aktywacją genów, o których wiadomo, że są aktywowane przez interferon, czyli proteinę, którą organizm wytwarza w reakcji na infekcję wirusową. Chcąc zweryfikować to spostrzeżenie, naukowcy potraktowali komórki z jamy nosowej interferonem i okazało się, że rzeczywiście doszło do aktywizacji genu ACE2. Interferon pomaga zwalczać infekcję poprzez zaburzanie zdolności wirusa do replikacji i aktywowanie komórek układu odpornościowego. Uruchamia on też zestaw genów, który ułatwia komórkom walkę z infekcją. Obecne badania są pierwszymi, które wykazały zwiazek ACE2 z reakcją na interferon. Spostrzeżenie to sugeruje, że koronawirusy mogły wyewoluować tak, by wykorzystywać systemy obronne organizmu, przejmując niektóre proteiny i używając je do własnych celów. Ordovas-Montanes przypomina, że również inne wirusy wykorzystują geny aktywowane przez interferon by dostać się do wnętrza komórek. Interferon niesie ze sobą wiele korzyści, dlatego jest czasami używany do walki z infekcjami, np. podczas leczenia wirusowego zapalenia wątroby typu B i C. Jednak obecne odkrycie oznacza, że wykorzystanie interferonu do leczenia COVID-19 może być bardziej skomplikowane. Z jednej bowiem strony środek ten może stymulować geny, które pomagają komórkom zwalczać infekcje i przetrwać uszkodzenia wywołane przez wirusa, z drugiej zaś strony interferon może dostarczać wirusowi nowe cele ataku. Trudno jest w tej chwili jednoznacznie określić rolę interferonu w zwalczaniu nowego koronawirusa. Jedynym sposobem na zrozumienie jego działania jest przeprowadzenie ściśle kontrolowanych testów klinicznych, mówi drugi z autorów badań, Alex K. Shalek. Przypomnijmy, że interferon beta, w połączeniu z dwoma innymi środkami, jest jedną z 4 potencjalnych terapii antykoronawirusowych testowanych właśnie przez WHO. « powrót do artykułu
- 15 odpowiedzi
-
- koronawirus
- SARS-CoV-2
-
(i 7 więcej)
Oznaczone tagami:
-
Proteina produkowana przez ludzki układ odpornościowy może powstrzymywać koronawirusy, w tym i ten odpowiedzialny za obecną epidemię COVID-19. Do takich wniosków doszedł międzynarodowy zespół naukowy, który zauważył, że proteina LY6E znacznie ogranicza zdolność koronawirusa do rozpoczęcia infekcji. Odkrycie może prowadzić do opracowania nowego leku. W trakcie badań naukowcy zauważyli, że myszy, które pozbawiono genu Ly6e, stały się niezwykle podatne na infekcje zwykle bezpiecznymi dla nich dawkami koronawirusa. Ten silny inhibitor działa na wszystkie koronawirusy, które testowaliśmy, w tym na koronawirusy, które spowodowały epidemie SARS z 2003 roku, MERS z 2012 oraz na obecny SARS-CoV-2, mówi jeden z autorów badań, profesor John Schoggins z UT Southwestern Medical Center. Obecne badania to efekt wieloletniej pracy Schogginsa, który w przeszłości zauważył, że gen LY6E przyczynia się do... zwiększenia zaraźliwości wirusa grypy. W 2017 roku, gdy Schoggins pracował już na UT Southwestern, jego laboratorium odwiedziła Stephanie Pfaender ze Szwajcarii, która pracuje w laboratorium Volkera Thiela, jednego z czołowych ekspertów od koronawirusów. Przyjechała, by wykorzystać dostępne w USA techniki do poszukiwania genów, które mogłyby powstrzymywać infekcje koronawirusem. Tak doszło do obecnego odkrycia. Zauważyliśy, że LY6E działa na koronawirusy odwrotnie, niż na grypę. Powstrzymuje infekcję, zamiast ją wspomagać. Zaintrygowało to nas i natychmiast przystąpiliśmy do pracy, gdyż już mieliśmy przygotowany zwierzęcy model LY6E, na którym mogliśmy prowadzić badania, mówi Schoggins. Prace zajęły niemal 2 lata. Niemal w tym samym czasie, gdy wybuchła epidemia COVID-19 naukowcy stwierdzili, że LY6E powstrzymuje wiele różnych koronawirusów. Właściwości LY6E testowano na komórkach nerek naczelnych, które są często używane do badań nad koronawirusami. Naukowcy zauważyli, że LY6E zapobiega wnikaniu koronawirusów do komórek. Gdy mu się to nie uda, nie może zainfekować organizmu. Jako, że akurat wybuchła obecna epidemia, Volker Thiel zdobył próbki ludzkiego SARS-CoV-2 i skonfrontował go z LY6E. Okazało się, że i ten koronawirus jest powstrzymywany przez proteinę. W tym samym czasie na UT Southwestern prowadzono badania nad modelem mysim infekowanym koronawirusem. W ich wyniku stwierdzono, że gdy u myszy brakuje Ly6e jej komórki odpornościowe nie radzą sobie z infekcją, a ich liczba dastycznie spada. To tylko pogarsza sytuację. Schoggins podkreśla, że koronawirus użyty w modelu mysim jest znacząco różny od SARS-CoV-2. Na przykład nie atakuje on układu oddechowego, a wątrobę, powodując żółtaczkę. Ponadto zwykle nie zabija. Chyba, że myszy zostają pozbawione Ly6e, wówczas infekcja jest dla nich śmiertelna. Pomimo tych różnic, model mysi jest powszechnie akceptowanym modelem służącym do zrozumienia sposobu replikacji i odpowiedzi immunologicznej na infekcje. Nasze badania pokazują, jak działa niezwykle ważny gen antywirusowy. Jako, że LY6E w sposób naturalny występuje w ludzkim organizmie, mamy nadzieję, że nasze odkrycie przyczyni się do powstania środka do zwalczania infekcji koronawirusami, mówi Schoggins. Naukowcy przypominają, że podobna strategia leczenia jest z powodzeniem wykorzystywana w walce z HIV. Ze szczegółami badań można zapoznać się na łamach bioRxiv. « powrót do artykułu
-
Jest szansa na „uniwersalną” szczepionkę antywirusową?
KopalniaWiedzy.pl dodał temat w dziale Medycyna
Naukowcy z Massachusetts General Hospital (MGH) informują o odkryciu potencjalnego celu dla uniwersalnej szczepionki antywirusowej, która chroniłaby przed wieloma typami patogenów. Wyniki ich pracy sugerują, że proteina Argonaute 4 (AGO4) jest piętą achillesową wirusów. Opracowanie skutecznej szczepionki antywirusowej to długotrwały proces. Nawet w takiej sytuacji jak obecnie, w obliczu epidemii koronawirusa 2019-nCoV i wywoływanej przezeń choroby o nazwie Covid-19, na szczepionkę trzeba będzie czekać wiele miesięcy. Obecnie dostępne szczepionki są opracowywane bardzo długo i działają tylko na określony szczep wirusa, co oznacza, że ludzie nie są chronieni przed innymi wirusami, a te często i szybko ewoluują. Gdyby jednak powstała uniwersalna szczepionka, bylibyśmy chronieni przed wieloma obecnymi i przyszłymi infekcjami. Wspomniana AGO4 to przedstawicielka większej rodziny AGO. Jeszcze do niedawna nie wiedziano, jaką rolę proteiny te spełniają. Teraz naukowcy z MGH pracujący pod kierunkiem doktor Kate L. Jeffrey odkryli, że AGO4 odgrywa kluczową rolę w ochronie komórek przed infekcją wirusową. Jak informują uczeni na łamach Cell Reports, AGO4 jest proteiną specyficzną dla komórek odpornościowych ssaków. Gdy uczeni próbowali infekować wirusami różne linie komórek, odkryli, że tylko te komórki, którym brakowało AGO4 był bardzo wrażliwe na infekcję. To zaś sugeruje, że niski poziom AGO4 ułatwia infekcje, zatem podniesienie poziomu tej proteiny będzie chroniło nas przed wieloma różnymi wirusami. Naszym celem jest zrozumienie, jak działa układ odpornościowy, dzięki czemu będziemy mogli stworzyć lek na wiele wirusów, zamiast szczepionki na jednego konkretnego, mówi Jeffrey. W kolejnym etapie badań naukowcy postarają się dowiedzieć, jak różne poziomy AGO4 wpływają na możliwość infekcji różnymi wirusami. Później będziemy musieli opracować metodę zwiększenia poziomu AGO4 w komórkach, by zwiększyć ochronę przeciwko wirusom, dodaje Jeffrey. « powrót do artykułu- 2 odpowiedzi
-
- wirus
- szczepionka
-
(i 5 więcej)
Oznaczone tagami:
-
RASER rozpoznaje i zabija komórki nowotworowe, oszczędzając zdrowe
KopalniaWiedzy.pl dodał temat w dziale Medycyna
Na Uniwersytecie Stanforda powstały syntetyczne proteiny, które rozpoznają komórki nowotworowe i uruchamiają w nich mechanizm apoptozy (zaprogramowanej śmierci komórkowej), oszczędzając przy tym zdrowe komórki. Nowa technika nazwana przez jej twórców RASER (rewiring of aberrant signaling to effector release) wykorzystuje dwie proteiny. Pierwsza z nich jest aktywowana w obecności sygnału permanentnego wzrostu komórkowego, który jest obecny w wielu rodzajach nowotworów, a druga z protein jest nośnikiem zaprogramowanej przez naukowców reakcji, którą może być np. zapoczątkowywanie apoptozy komórki nowotworowej. Co prawda eksperymenty z techniką RASER były prowadzone w kontrolowanym środowisku laboratoryjnym, jednak naukowcy uważają, że może to doprowadzić do pojawienia się nowego typu celowanej terapii antynowotworowej, podczas której odpowiednio spreparowane proteiny będą precyzyjnie niszczyły komórki nowotworowe, co pozwoli uniknąć efektów ubocznych pojawiających się w innych metodach leczenia. Udało się nam przeprogramować komórkę nowotworową, by zachowywała się tak, jak sobie życzymy, mówi profesor neurobiologii i bioinżynierii Michael Lin. Zawsze poszukiwaliśmy sposobu, by zabić komórki nowotworowe, ale oszczędzić zdrowe komórki. Komórki nowotworowe pojawiają się jako skutek nieodpowiednich sygnałów, przez które się rozrastają w sposób niekontrolowany, zatem włamaliśmy się do komórek nowotworowych, by wykorzystać ten sygnał w pożytecznym celu. Wiele nowotworów polega na sygnałach pochodzących z receptorów obecnych na ich powierzchni. Te ścieżki sygnałowe są używane przez zdrowe komórki do wzrostu w odpowiedzi na czynniki zewnętrzne, np. na zranienie. Jednak w komórkach nowotworowych proteiny receptorów są często zmutowane lub dochodzi do ich nadmiernej ekspresji, przez co receptor „ciągle włączony” i bez przerwy wysyła do komórki sygnał prowadzący do jej wzrostu. Badacze ze Stanforda skupili się na dwóch receptorach z rodziny ErbB – EGFR i HER2. Często napędzają one nowotwory mózgu, piersi i płuc. Wiele leków działa poprzez blokowanie kaskady sygnałowej rozpoczynanej przez receptory. Jednak leki nie nie odróżniają komórek nowotworowych od komórek zdrowych i również w nich blokują szlaki sygnałowe. Nie mamy leku, który potrafiłby odróżnić prawidłowo działający szlak sygnałowy od nadmiernie aktywnego. Wiedzieliśmy, że potrzebujemy odpowiedniej strategii, ale do niedawna nią nie dysponowaliśmy, mówi Lin. Naukowcy najpierw zaprojektowali sztuczną proteinę złożoną z dwóch naturalnych protein. Jedna z nich łączy się z aktywnym receptorem ErbB, a druga wycina odpowiednią sekwencję aminokwasów. Następnie stworzyli drugą proteinę, która łączy się z wewnętrzną stroną błony komórkowej i niesie ze sobą odpowiedni „ładunek”, który w docelowej komórce wywołuje zaprogramowaną reakcję. Gdy pierwsza z protein połączy się z aktywnym receptorem ErbB, wycina z drugiej proteiny sekwencję „ładunku”, ten trafia do wnętrza komórki i rozpoczyna się zaprojektowany przez naukowców proces. Gdy receptor jest ciągle aktywny, a tak się dzieje w komórkach nowotworowych, uwolniony ładunek akumuluje się z czasem w komórce. W końcu jest go tak dużo, że rozpoczyna się pożądany proces. W ten sposób jest on uruchamiany wyłącznie w komórkach nowotworowych, wyjaśniają uczeni. Po licznych próbach i dostrajaniu nowej techniki, naukowcy byli w stanie precyzyjnie atakować konkretne komórki nowotworowe zależne od aktywności receptora ErbB. Rozpoczęto więc testy z proteiną uruchamiającą apoptozę. Uczeni porównali skuteczność techniki RASER z dwoma powszechnie stosowanymi technikami walki z dającymi przerzuty rakiem piersi – chemioterapią oraz leczeniem środkami blokującymi receptory ErbB. Badania prowadzono na różnych laboratoryjnych kulturach. Część stanowiły kultury komórek raka piersi i płuc, w których szlak sygnałowy ErbB był nadaktywny, część kultury komórek raka piersi z normalną aktywnością ErbB, a część prawidłowe komórki piersi i płuc. Badania wykazały, że chemioterapia z użyciem karboplatyny i paklitakselu zabijała wszystkie komórki bez wyjątku. Terapia inhibitorem ErbB dawała niejednoznaczne wyniki i nie były one wiarygodnie skorelowane z poziomem aktywności receptora ErbB. Tylko technika RASER zabiła te komórki, które wykazywały nadmierną aktywność ErbB, a oszczędziła te o normalnej aktywności receptora. Uczonych czeka jeszcze sporo pracy zanim sprawdzą, czy RASER działa na komórkach ludzkiego guza. Wśród wyzwań przed jakimi stoją będzie znalezienie sposobu na dostarczenie sztucznych protein do guza czy zrozumienie, jak na ich obecność w organizmie zareaguje układ odpornościowy. Jednak profesor Lin jest optymistą. Mamy sporą wiedzę na temat genomu nowotworu, szlaków sygnałowych i interakcji komórek nowotworowych z układem odpornościowym. W końcu powinniśmy połączyć tę wiedzę, by opracować sposób na poradzenie sobie z jednymi z najpoważniejszych problemów zdrowotnych, przed jakimi stają ludzie. RASER to technika zarówno indywidualna jak i ogólna, po raz pierwszy możemy zaatakować chore komórki oszczędzając te zdrowe. « powrót do artykułu -
Dla pacjentów z agresywnymi formami raka nerki czy skóry jedynym ratunkiem może być interleukina-2, która wzmaga odpowiedź układu odpornościowego. Problem jednak w tym, że aby skutecznie zwalczała ona raka trzeba zastosować dawki, które zagrażają życiu pacjenta. Naukowcy z University of Washington wykorzystali model komputerowy do zaprojektowania od początku nowej proteiny, która równie skutecznie jak IL-2 zwiększa odpowiedź układu odpornościowego, ale jest pozbawiona skutków ubocznych interleukiny. Na razie nową proteinę z powodzeniem przetestowano na zwierzętach. IL-2 to cytokina zwiększająca odpowiedź limfocytów T poprzez jednoczesne przyczepianie się do ich receptorów IL-2β oraz IL-2γ. Jeśli komórka posiada receptor IL-2α interleukina-2 łączy się również z nim. Może to się przydarzyć w komórkach budujących naczynia krwionośne, co powoduje, że zaczynają one przeciekać, a to zagraża życiu pacjenta. Od 30 lat naukowcy próbują zmienić IL-2 w bardziej bezpieczną i efektywną, mówi Daniel Adriano Silva Manzano, biochemik z University of Washington i główny autor najnowszych badań. Jednak trudno jest dokonać zmian w IL-2, gdyż jest bardzo niestabilna i przestaje działać, gdy traci swoją zwykłą strukturę, a kolejne mutacje mogą ją jeszcze bardziej destabilizować. Silva Manzano poprosił o pomoc Davida Bakera, projektanta białek i dyrektora laboratorium na swojej uczelni, oraz zwerbował do pomocy kolegów z USA, Portugalii, Hiszpanii i Wielkiej Brytanii. Ich celem było stworzenie od podstaw nowej proteiny przypominającej IL-2. Naukowcy zaczęli pracę od przeanalizowania na poziomie atomowym sposobu interakcji IL-2 z receptorami α, β i γ. Gdy IL-2 zwija się w aktywny kształt 3D tworzy cztery segmenty o kształcie spirali. W miejscu, gdzie spirale łączą się ze sobą znajdują się dwa miejsca, które wiążą się z receptorami β i γ. Z receptorem α łączy się część jednej ze spiral oraz dwa miejsca łączenia spiral. Naukowcy wykorzystali stworzone przez Bakera oprogramowanie o nazwie Rosetta. Ich celem było zaprojektowanie takiego białka, które łączyłoby się z receptorami β i γ, ale nie miałoby elementów łączących je z receptorami α. Rosetta zaproponowała 40 różnych rozwiązań. Po ich przeanalizowaniu naukowcy wybrali 22 białka, które zsyntetyzowali i przetestowali. W końcu wybrali wersję nazwaną przez siebie Neo-2/15. Jedynie 14% sekwencji jej aminokwasów jest identyczna z IL-1. Badania laboratoryjne wykazały, że nowe białko ściśle łączy się z receptorami β i γ, ale nie z receptorami α. Podczas testów na myszach z nowotworami jelita grubego i czerniakiem nowa proteina wykazywała znacznie mniejsze skutki uboczne niż IL-2, silnie hamowała wzrost guza, a u niektórych zwierząt doprowadziła nawet do zniknięcia guzów nowotworowych. Dała więc lepsze skutki niż interleukina-2, której podawanie nie likwidowało guzów. Jeśli testy kliniczne Neo-2/15 przebiegną równie pomyślnie, to onkolodzy zyskają nowy środek, który będzie można stosować dłużej, dzięki czemu organizm pacjenta będzie miał więcej czasu, by pozbyć się nowotworu. Niewykluczone, że jeszcze bardziej skuteczne może być połączenie Neo-2/15 z inhibitorami punktów kontrolnych. University of Washington licencjonował Neo-2/15 firmie Neoleukin Therapeutics, która pracuje nad rozpoczęciem testów klinicznych. Zatrudnieni w niej naukowcy poszukują obecnie sposobu na jeszcze większe zredukowanie skutków ubocznych nowego środka tak, by układ odpornościowy atakował jedynie komórki guza, a nie zdrowe komórki. « powrót do artykułu
-
Mikroorganizmy produkujące tlen w procesie fotosyntezy mogły istnieć na Ziemi co najmniej miliard lat wcześniej, niż dotychczas sądzono. Najnowsze odkrycie może zmienić nasze spojrzenie na ewolucję życia na Ziemi oraz na to, jak mogło ono ewoluować na innych planetach. Na Ziemi tlen jest niezbędny do powstania bardziej złożonych form życia, które wykorzystują go w procesie produkcji energii. Przed około 2,4 miliarda lat temu na Ziemi doszło katastrofy tlenowej. To nazwa wielkich przemian środowiskowych na Ziemi, których przyczyną było pojawienie się dużych ilości tlenu w atmosferze. Część naukowców uważa, że cyjanobakterie, które dostarczyły tlen do atmosfery, pojawiły się stosunkowo niedługo przed katastrofą tlenową. Jednak, jako, że cyjanobakterie wykorzystują dość złożony mechanizm fotosyntezy, podobny do tej używanego obecnie przez rośliny, inni uczeni uważają, że przed cyjanobakteriami mogły istnieć inne, prostsze mikroorganizmy produkujące tlen. Teraz naukowcy z Imperial College London poinformowali o znalezieniu dowodów na obecność fotosyntezy tlenowej na co najmniej miliard lat przed pojawieniem się cyjanobakterii. Wiemy, że cyjanobakterie są bardzo starymi formami życia. Nie wiemy jednak dokładnie, jak starymi. Jeśli cyjanobakterie liczą sobie, na przykład, 2,5 miliarda lat, to z naszych badań wynika, że fotosynteza tlenowa zachodziła na Ziemi już 3,5 miliarda lat temu. To zaś wskazuje, że pomiędzy powstaniem Ziemi a fotosyntezą prowadzącą do powstania tlenu nie musiało minąć tak dużo czasu, jak sądziliśmy, mówi główny autor badań, doktor Tanai Cardona. Jeśli fotosynteza tlenowa wyewoluowała wcześnie, oznacza to, że jest ona procesem, z którym ewolucja dość łatwo potrafi sobie poradzić. To zaś zwiększa prawdopodobieństwo pojawienia się jej na innych planetach i pojawienia się, wraz z nią, złożonych form życia. Jednak stwierdzenie, kiedy na Ziemi pojawili się pierwsi producenci tlenu, jest trudne. Im starsze są skały, tym rzadziej występują i tym trudniej udowodnić, że znalezione w nich skamieniałe mikroorganizmy wykorzystywały lub wytwarzały tlen. Zespół Cardony nie zajmował się więc skamieniałymi mikroorganizmami, a postanowił zbadać ewolucję dwóch głównych protein zaangażowanych w fotosyntezę, w wyniku której powstaje tlen. W pierwszym etapie fotosyntezy cyjanobakterie wykorzystują światło do rozbicia wody na protony, elektrony i tlen. Pomocny jest w tym kompleks białkowy o nazwie Fotoukład II. Fotoukład II złożony jest m.in. z homologicznych protein D1 oraz D2. W przeszłości było one identyczne, jednak obecnie są one kodowane przez różne sekwencje co wskazuje, że w pewnym momencie się rozdzieliły. Nawet wówczas, gdy były identyczne, były one w stanie prowadzić fotosyntezę tlenową. Jeśli jednak udałoby się określić moment, w którym się rozdzieliły, byłby to moment, w którym na pewno tlen powstawał na Ziemi w wyniku fotosyntezy. W przeszłości zatem podobieństwo sekwencji genetycznych kodujących D1 i D2 wynosiło 100%, obecnie zaś kodujące je sekwencje w cyjanobakteriach i roślinach są podobne do siebie w 30%. Naukowcy wykorzystali więc złożone modele statystyczne oraz znane fakty z historii ewolucji fotosyntezy, by dowiedzieć się, w jakim czasie mogło dojść do zmiany ze 100 do 30 procent. Wyliczyli, że D1 i D2 w Fotoukładzie II ewoluowały wyjątkowo powoli. Okazało się, że musiało minąć co najmniej miliard lat, by doszło do takiej zmiany w kodującej obie proteiny sekwencji genetycznej. Nasze badania sugerują, że fotosynteza tlenowa rozpoczęła się prawdopodobnie na długo przed pojawieniem się ostatniego przodka cyjanobakterii. Jest to zgodne z ostatnimi badaniami geologicznymi, które wskazują, że zlokalizowane gromadzenie sie tlenu było możliwe już ponad 3 miliardy lat temu. Tym samym pojawienie się cyjanobakterii i pojawienie się fotosyntezy, w wyniku której powstaje tlen, nie jest tym samym zjawiskiem. Pomiędzy oboma wydarzeniami mogło upłynąć bardzo dużo czasu. Dla nauki oznacza to wielką zmianę perspektywy, stwierdza Cardona. « powrót do artykułu
- 3 odpowiedzi
-
W niektórych nowotworach płuc występuje mutacja proteiny EGFR. Zwykle proteina ta działa jak włącznik i wyłącznik złożonych szlaków molekularnych, które informują komórkę, kiedy może rosnąć i się dzielić, a kiedy nie. Zwykle wszystko działa prawidłowo, jednak gdy dojdzie do mutacji EGFR szklaki molekularne pozostają na stałe włączone, co prowadzi do nadmiernej proliferacji komórek i zamiany ich w komórki nowotworowe. Dotychczas opracowano już trzy generacje coraz silniejszych leków, które biorą na cel zmutowane EGFR i uruchamiają mechanizm samoniszczenia guza. Jednak zwykle leczenie kończy się tak samo. Nowotwór ustępuje na nie dłużej niż 18 miesięcy, a potem pojawia się na nowo i jest bardziej agresywny oraz odporny na leczenie. Profesor Sourav Bandyopadhyay z Uniwersytetu Kalifornijskiego w San Francisco (UCSF), autor najnowszych badań, mówi, że dzieje się tak, gdyż komórki nowotworowe potrafią, po pierwszym szoku, jakiego doznają, gdy zostaną zaatakowane przez leki, zmienić sposób swojego działania i stworzyć strategie pozwalające im na przetrwanie i dalszy rozwój. W przypadku nowotworów ze zmutowaną proteiną EGFR dochodzi do takich zmian, po których komórki nowotworowe nie są już uzależnione od EGFR. Bandyopadhyay chciał dowiedzieć się, dlaczego się tak dzieje. Naukowcy, aby zbadać przyczyny lekooporności, rozpoczęli badania wielu linii komórek nowotworowych ze zmutowanym EGFR i poddawali je działaniu leku osimertinib (Tagrisso) lub rociletinib. Komórki w kulturach zaczęły wymierać po potraktowaniu lekami, jednak po sześciu tygodniach pojawiły się znowu i były oporne na działanie leków. Po tym, jak komórki nowotworowe przestały reagować na leki atakujące EGFR, naukowcy testowali na nich kolejne 94 leki, by sprawdzić, czy można w jakiś sposób pozbawić je lekooporności. Okazało się, że leki, które biorą na cel proteinę o nazwie Kinaza Aurora A w połączeniu z osimertinibem lub rociletinibem na dobre zabijały komórki nowotworowe, uniemożliwiając ich ponowne pojawienie się. Podobne wyniki uzyskano, że myszom przeszczepiono lekooporne komórki ludzkiego nowotworu płuc. U zwierząt guzy rozwijały się bez przeszkód gdy leczono je samymi środkami biorącymi na cel EGFR. Jednak przy terapii łączonej z lekami przeciwko Kinazie Aurora A doszło do zmniejszenia się guzów i nie zaobserwowano przy tym skutków ubocznych. Nigdy wcześniej nie łączono Kinazy Aurora z lekoopornością na środki przeciwnowotworowe. To całkowicie nowe podejście, mówi profesor Bandyopadhyay. Naukowcy odkryli, że sama Kinaza Aurora A nie napędza wzrostu guza. Dlatego też leki biorące wyłącznie ją na cel są nieskuteczne. Kinaza Aurora A pozwala komórkom nowotworowym uniknąć śmierci. Osimertinib i rocilentinib wyłączają zmutowane EGFR. To spowalnia wzrost guza i włącza proces jego śmierci. Wówczas guz zmienia sposób działania i aktywuje Kinazę Aurora A. Kinaza Aurora A służy więc komórkom nowotworowym jako wyjście awaryjne, pozwalająca na uniknięcie śmierci. Wycisza ona bowiem mechanizmy prowadzące do śmierci, a sygnały z niej płynące są silniejsze, niż sygnały pochodzące z EGFR. Atakując jednocześnie EGFR i Aurorę naukowcy zamknęli komórkom nowotworowym wyjście awaryjne. Uczeni opracowali nie tylko nową terapię, ale również biomarker, dzięki którym można będzie stwierdzić, którzy pacjenci są podatni na łączoną terapię przeciwko EGFR i Aurorze. Okazało się bowiem, że u pacjentów cierpiących na zaawansowany lekooporny nowotwór płuc ze zmutowanym EGFR występuje zwiększony poziom proteiny TPX2. Naukowcy sądzą, że TPX2, o której wiadomo, iż aktywuje Kinazę Aurora, może pozwolić na określenie, kiedy warto zastosować terapię łączoną. Profesor Bandyopadhyay i jego zespół chcą teraz postarać się o zgodę na rozpoczęcie badań klinicznych nad łączoną terapią i biomarkerem TPX2. « powrót do artykułu
-
- lekooporność
- Kinaza Aurora A
-
(i 5 więcej)
Oznaczone tagami:
-
Nowe badania wykazały, że najbardziej śmiertelne z nowotworów trzustki mają poważną słabość. Jest nią uzależnienie od pewnego genu i produkowanej przeń niego proteiny. To daje nadzieję na opracowanie metod skutecznej walki z takimi nowotworami. Naukowcy z Cold Spring Harbor Laboratory (CSHL) badali zachowanie komórek nowotworowych w najbardziej agresywnych podtypach nowotworu trzustki. To szczególnie śmiercionośny nowotwór, mówi główny autor badań, doktor Timothy Somerville. Uczony dodaje, że przeciętny pacjent z nowotworem trzustki żyje przez dwa lata od diagnozy. Jednak osoby cierpiące na szczególnie agresywne podtypy umierają w czasie krótszym niż rok. Zidentyfikowaliśmy gen TP63 do którego szczególnej ekspresji dochodzi w tych właśnie agresywnych nowotworach, mówi Smorville. Produkowana przez niego proteina 63 (P63) normalnie nie występuje w komórkach trzustki. Jest ona potrzebna do budowy komórek nabłonkowych skóry. Gdy więc naukowcy zauważyli P63 w trzustce, natychmiast zorientowali się, że jest w tym coś podejrzanego. Okazało się, że proteina ta promuje wzrost i rozprzestrzenianie się komórek nowotworowych trzustki. Dzięki niej nowotwór rozwija się niezwykle łatwo. Jednym z pozytywnych aspektów tego odkrycia jest spostrzeżenie, że komórki nowotworowe tak bardzo uzależniają się od P63, że nie mogą bez niej się rozwijać. Rozpoczęliśmy więc poszukiwanie sposobu na wygaszenie niewłaściwej aktywności P63 jako sposobu na leczenie pacjentów, wyjaśnia Somerville. Innym celem zespołu profesora Chrisa Vakoca, w którym pracuje Somerville, jest zbadanie, dlaczego w trzustkach niektórych pacjentów dochodzi do aktywacji genu TP63. Jeśli uda się nam powstrzymać ekspresję tego genu to będzie to z korzyścią dla najbardziej narażonych pacjentów. « powrót do artykułu
-
- nowotwór trzustki
- proteina
-
(i 2 więcej)
Oznaczone tagami:
-
Naukowcy od dłuższego czasu wiedzą, że w ponad 90% przypadków najbardziej rozpowszechnionego nowotworu nerki mamy do czynienia z utratą genu supresorowego VHL. Jego brak przyczynia się do rozwoju choroby. Teraz udało się zbadać, w jaki dokładnie sposób brak VHL wywołuje nowotwór oraz zidentyfikować potencjalny cel nowej terapii antynowotworowej. Gdy komórka traci VHL dochodzi w niej do nagromadzenia proteiny ZHX2, co z kolei włącza sygnał promujący rozwój nowotworu. Ta proteina może być potencjalnym celem nowej terapii przeciwnowotworowej. Spróbujemy zbadać, w jaki sposób możemy ją zaatakować, mówi profesor Qing Zhang z University of North Carolina. Rak jasnokomórkowy stanowi około 70% wszystkich nowotworów nerki. U około 90% pacjentów z tą chorobą występuje mutacja, która prowadzi utraty funkcji VHL, a to z kolei może powodować nadmierny rozrost naczyń krwionośnych. VHL to najważniejszy supresor raka jasnokomórkowego nerki. Nauka dobrze udokumentowała fakt, że brak VHL jest najważniejszym czynnikiem w całym procesie rozwojowym raka nerki. Zatem jest niezwykle ważne, byśmy zrozumieli, w jaki sposób utrata VHL prowadzi do rozwoju nowotworu i w jaki sposób możemy przerwać ten proces, dodaje Zhang. Istnieją zatwierdzone do użytku leki, które blokują sygnały prowadzące do nadmiernego rozrostu naczyń krwionośnych – a proces taki jest obserwowany w przypadku braku VHL – i leki te są standardowe podawane w jasnokomórkowym raku nerki. Jednak niektórzy pacjenci nie reagują na te leki, a u innych rozwija się oporność. Dlatego też Zhang i jego zespół postanowili poszukać innego celu terapeutycznego. Chcieliśmy zrozumieć, co, po utracie VHL, promuje onkogenezę, stwierdza Zhang. Naukowcy stworzyli technikę, za pomocą której analizowali to, co dzieje się w komórkach po utracie VHL. Odkryli, że dochodzi tam do nadmiernego nagromadzenia proteiny ZHX2. Gdy w laboratorium wyeliminowali ZHX2 z komórek, powstrzymało to rozwój nowotworu i jego rozprzestrzenianie się. Profesor William Kim, członek zespołu badawczego, zauważa, że potrzebne są nowe terapie, które mogą pomóc kolejnym pacjentom, u których nowotwór daje przerzuty. W ciągu ostatniej dekady poczyniono duże postępy w leczeniu nowotworu nerki. Na rynku dostępnych jest około tuzina leków, jednak wiele z nich jest do siebie podobnych. Badania takie jak nasze są potrzebne, gdyż pozwalają nam lepiej poznać biologię choroby i zidentyfikować nowe, różne od wcześniejszych sposoby na zwalczanie nowotworu, dodaje. « powrót do artykułu
-
- jasnokomórkowy rak nerki
- ZHX2
-
(i 3 więcej)
Oznaczone tagami: