Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów ' polaryzacja' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 3 wyniki

  1. Stała struktury subtelnej (α) to być może najważniejsza ze stałych we wszechświecie. Opisuje siłę oddziaływań elektromagnetycznych i jest kombinacją trzech podstawowych stałych przyrody – ładunku elektronu, stałej Plancka i prędkości światła. Istnieje wiele metod pomiaru tej stałej. Zwykle pomiary takie są dokonywane pośrednio, poprzez pomiar innych właściwości fizycznych i obliczenie na tej podstawie wartości α. Na Uniwersytecie Technicznym w Wiedniu (TU Wien) przeprowadzono eksperyment, w trakcie którego udało się po raz pierwszy bezpośrednio zmierzyć wartość stałej struktury subtelnej. Stała struktury subtelnej opisuje siłę oddziaływań elektromagnetycznych. Wskazuje, z jaką siłą naładowane cząstki, takie jak elektrony, reagują z polem magnetycznym. Jej wartość wynosi 1/137, gdyby była nieco inna – powiedzmy 1/136 – świat, jaki znamy, nie mógłby istnieć Atomy miałyby inne rozmiary, wszystkie procesy chemiczne przebiegałyby inaczej, inaczej też przebiegałyby reakcje termojądrowe w gwiazdach. Co interesujące, naukowcy spierają się o to, czy stała struktury subtelnej jest rzeczywiście stałą, czy też w ciągu miliardów lat jej wartość uległa niewielkim zmianom. Większość ważnych stałych fizycznych to wartości wymiarowe, wyrażane w konkretnych jednostkach, na przykład prędkość światła wyrażamy w metrach na sekundę. Stała struktury subtelnej jest inna. Nie ma tutaj jednostek, to po prostu liczba. Jest to stała bezwymiarowa, wyjaśnia profesor Andrei Pimenow z Instytutu Fizyki Ciała Stałego na TU Wien. Pimenov oraz jego koledzy z TU Wien i naukowcy z Uniwersytetu Kalifornijskiego w Los Angeles przeprowadzili pierwszy eksperyment, podczas którego możliwe było dokonanie bezpośrednich pomiarów wartości stałej struktury subtelnej. Światło lasera jest spolaryzowane liniowo, oscyluje wertykalnie. Gdy podczas eksperymentu trafia na dysk z materiału o grubości liczonej w nanometrach, jego polaryzacja ulega zmianie. Samo w sobie nie jest to niczym niezwykłym. Wiele materiałów powoduje zmianę polaryzacji światła laserowego. Dzięki interakcji fotonów z polem elektromagnetycznym można polaryzację można obracać. Przy silnych polach magnetycznych i w niskich temperaturach pojawia się kwantowy efekt Halla, a zmiany polaryzacji są proporcjonalne do stałej struktury subtelnej. Jednak konieczność używania silnego pola magnetycznego powoduje, że trzeba uwzględnić je w równaniach opisujących α, co utrudnia przygotowanie eksperymentu. Podczas ostatniego eksperymentu naukowcy wykorzystali światło terahercowego lasera, które nakierowali na cienki dysk izolatora topologicznego o wzorze chemicznym (Cr0.12Bi0.26Sb0.62)2Te3. Materiał zawiera chrom, ma więc wbudowane pole magnetyczne. Gdy naukowcy przyjrzeli się zmianie polaryzacji światła po przejściu przez dysk okazało się, że doszło do skokowej, a nie płynnej, zmiany kąta polaryzacji i wynosiła ona tyle, ile wartość α. Stała struktury subtelnej jest tutaj natychmiast widoczna jako kąt, cieszy się Pimenov. I mimo że pomiary te nie dały tak dokładnego wyniku, jak pomiary pośrednie, to – jak podkreśla Pimenov – główną korzyścią jest tutaj możliwość otrzymania podstawowej stałej fizycznej z bezpośredniego eksperymentu, a nie poleganie na innych pomiarach i precyzji kalibracji sprzętu. « powrót do artykułu
  2. Światło posiada niezwykle interesującą cechę. Jego fale o różnej długości nie wchodzą ze sobą w interakcje. Dzięki temu można jednocześnie przesyłać wiele strumieni danych. Podobnie, światło o różnej polaryzacji również nie wchodzi w interakcje. Zatem każda z polaryzacji mogłaby zostać wykorzystana jako niezależny kanał przesyłania i przechowywania danych, znakomicie zwiększając gęstość informacji. Naukowcy z Uniwersytetu Oksfordzkiego poinformowali właśnie o opracowaniu metody wykorzystania polaryzacji światła do zmaksymalizowania gęstości danych. Wszyscy wiemy, że przewaga fotoniki nad elektronika polega na tym, że światło przemieszcza się szybciej i jest bardziej funkcjonalne w szerokich zakresach. Naszym celem było wykorzystanie wszystkich zalet fotoniki połączonych z odpowiednim materiałem, dzięki czemu chcieliśmy uzyskać szybsze i gęstsze przetwarzanie informacji, mówi główny autor badań, doktorant June Sang Lee. Jego zespół, we współpracy z profesorem C. Davidem Wrightem z University of Exeter, opracował nanowłókno HAD (hybrydyzowane-aktywne-dielektryczne). Każde z nanowłókien wyróżnia się selektywną reakcją na konkretny kierunek polaryzacji, zatem możliwe jest jednoczesne przetwarzanie danych przenoszonych za pomocą różnych polaryzacji. Stało się to bazą do stworzenia pierwszego fotonicznego procesora wykorzystującego polaryzację światła. Szybkość obliczeniowa takiego procesora jest większa od procesora elektronicznego, gdyż poszczególne nanowókna są modulowane za pomocą nanosekundowych impulsów optycznych. Nowy układ może być ponad 300-krotnie bardziej wydajny niż współczesne procesory. To dopiero początek tego, co możemy osiągnąć w przyszłości, gdy uda się nam wykorzystać wszystkie stopnie swobody oferowane przez światło, w tym polaryzację. Dzięki temu uzyskamy niezwykły poziom równoległego przetwarzania danych. Nasze prace wciąż znajdują się na bardzo wczesnym etapie, dlatego też szacunki dotyczące prędkości pracy takiego układu wciąż wymagają eksperymentalnego potwierdzenia. Mamy jednak niezwykle ekscytujące pomysły łączenia elektroniki, materiałów nieliniowych i komputerów, komentuje profesor Harish Bhakaran, który od ponad 10 lat prowadzi prace nad wykorzystaniem światła w technologiach obliczeniowych. Ze szczegółami pracy można zapoznać się w artykule Polarisation-selective reconfigurability in hybridized-active-dielectric nanowires opublikowanym na łamach Science Advances. « powrót do artykułu
  3. Badacze z Uniwersytetu w Tel Awiwie odkryli nowy sposób na przełączanie polaryzacji ultracienkich materiałów ferroelektrycznych. Nazwali swoją metodę „slidetroniką” – slidetronics – gdyż do przełączania dochodzi, gdy sąsiadujące warstwy atomów prześlizgują się w poprzek siebie. Slidetronika może być alternatywnym efektywnym sposobem kontrolowania miniaturowych urządzeń elektrycznych. Możłiwość przełączania polaryzacji elektrycznej na niewielkich obszarach to kluczowy element nowoczesnych technologii. Stosuje się ją m.in. w dyskach twardych. W ostatnich latach grubość indywidualnych domen o różnej polaryzacji udało się zmniejszyć ze 100 nanometrów do skali atomów. Jednak dalsza miniaturyzacja staje się poważnym problemem, gdyż może dochodzić do długodystansowych interakcji pomiędzy różnymi domenami, która powoduje, że polaryzacja indywidualnych domen zostaje ujednolicona. W miarę zmniejszania domen magnetycznych, efekty powierzchniowe zaczynają odgrywać coraz większą rolę. Specjaliści, by poradzić sobie z tym problemami, zaczęli rozglądać się za materiałami alternatywnymi dla krzemu, jak heksagonalny azotek boru (h-BN) czy dichalkogenki metali przejściowych (TMD). To materiały, których warstwy mogą mieć grubość atomu i jednocześnie posiadać uporządkowaną strukturę krystaliczną. Tworzy się je z nakładających się na siebie warstw utrzymywanych przez słabe oddziaływania van der Waalsa. Problem jednak w tym, że polaryzacja naturalnie uzyskiwanych jest ograniczona, gdyż materiały te mają tendencję do przyjmowania struktury centrosymetrycznej. Badacze pracujący pod kierunkiem Moshe Ben Shaloma przełamali tę niepożądaną symetrię kontrolując kąt ułożenia dwóch sąsiadujących warstw hBN. Ułożenie, które łamie symetrię i zachowuje polaryzację to jedno z pięciu możliwych ułożeń dwuwarstwowego h-BN. Podzieliliśmy to na dwie grupy: „równoległą” i „antyrównoległą”, mówi Ben Shalom. W ułożeniu optymalnie antyrównoległym (AA+) atomy azotu z jednej warstwy spoczywają na atomach boru z drugiej. W orientacji niestabilnie równoległej (AA) wszystkie atomu azotu z obu warstw spoczywają na sobie i warstwy się odpychają. Przesuwają się względem siebie do czasu, aż stworzą tylko połowa atomów nachodzi na siebie (konfiguracja AB). Okazało się, że takie przesunięcie warstw (AB) względem siebie pozwala na lokalne przełączanie polaryzacji. Naukowcy stwierdzili, że taka stabilna polaryzacja może być niezwykle użyteczna w dalszej miniaturyzacji nieulotnych układów pomięci. Elektrony mogą się wydajnie tunelować pomiędzy obiema warstwami i mechanizm ten można wykorzystać do szybkiego odczytu i zapisu polaryzacji. « powrót do artykułu
×
×
  • Dodaj nową pozycję...