Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów ' planeta' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 25 wyników

  1. Nowo odkryta planeta wielkości Neptuna ma gęstość większą od stali. Masa TOI-1853b jest niemal dwukrotnie większa niż planet jej rozmiarów. To zaś oznacza, że musi składać się ze znacznie większego odsetka skał, niż można by się spodziewać. Dlatego naukowcy z Włoch i Wielkiej Brytanii uważają, że planeta powstała w wyniku zderzenia innych planet. Jak czytamy na łamach Nature, zderzenie odrzuciło lżejszy materiał, jak woda i atmosfera, pozostawiając planetę złożoną w olbrzymiej mierze ze skał. W naszym Układzie Słonecznym mamy dowody na potężne kolizje między planetami. Dowodem takim jest istnienie Księżyca. Dysponujemy też dowodami na zderzenia pomiędzy mniejszymi egzoplanetami. Wiemy, że egzoplanety są niezwykle zróżnicowane. Wiele z nich nie ma odpowiedników w Układzie Słonecznym, ale często te skaliste ciała niebieskie mają podobną masę i skład do naszych lodowych olbrzymów, Neptuna i Urana, mówi doktor Phil Carter z University of Bristol. Naukowcy przeprowadzili symulacje komputerowe, które miały pokazać, w jaki sposób mogła powstać planeta taka jak TOI-1853b. Stwierdzili, że planety, które dały jej początek, prawdopodobnie były bogate w wodę. Musiały zderzyć się z prędkością większą niż 75 km/s, by powstała planeta o takich parametrach jak TOI-1853b, dodaje Carter. Odkrycie potwierdza rolę zderzeń w powstawaniu planet. Zdobyta dzięki niemu wiedza pozwala łączyć to, co wiemy o ewolucji Układu Słonecznego z ewolucją innych systemów planetarnych. To niezwykle zaskakująca planeta. Zwykle planety zawierające tak dużo skał powinny tworzyć gazowe olbrzymy, jak Jowisz, którego gęstość jest podobna do gęstości wody. Tymczasem TOI-1853b ma rozmiary Neptuna, ale jest gęstsza niż stal. Wykazaliśmy, że taka planeta może powstać, jeśli doszło do wysokoenergetycznych zderzeń innych planet, podsumowuje Jingyao Dou z Bristolu. Teraz badacze chcą jeszcze dokładniej przyjrzeć się TOI-1853b, spróbować dokładnie określić jej skład i poszukać ewentualnych resztek atmosfery. « powrót do artykułu
  2. Dwóch naukowców z Japonii, Patryk Sofia Lykawka i Takashi Ito, zaprezentowali wyliczenia, które mogą wskazywać, że w Pasie Kuipera znajduje się planeta wielkości Ziemi. Dziewiąta Planeta, zwana też Planetą X, jest od wielu lat przedmiotem poszukiwań. Przynajmniej od czasu, gdy w 2016 roku dwóch profesorów z Caltechu (California Institute of Technology), zaprezentowali pracę, z której wynikało, że orbity 13 odległych obiektów z Pasa Kupiera ma nietypowe podobne orbity, a można je wyjaśnić obecnością planety. Od czasu opublikowania pracy uczonych z Caltechu odkryto kolejne obiekty, których orbity pasowałyby do hipotezy o obecności nieznanej planety, rozpoczęto jej poszukiwania w średniowiecznych tekstach, pojawiła się też hipoteza, że w Układzie Słonecznym krąży pierwotna czarna dziura, a nie nieznana planeta. Patryk Sofia Lykawka z Uniwersytetu Kindai oraz Takashi Ito z Narodowego Obserwatorium Astronomicznego Japonii i Uniwersytetu Technologii w Chiba opublikowali w The Astronomical Journal pracę, w której opisują właściwości obiektów z Pasa Kuipera, które wskazują na obecność planety. Wykorzystaliśmy symulację komputerową problemu wielu ciał, by zbadać wpływ hipotetycznej planety w Pasie Kuipera na strukturę orbit obiektów transneptunowych znajdujących się w odległości większej niż 50 jednostek astronomicznych. Do stworzenia naszego modelu wykorzystaliśmy dane obserwacyjne, w tym dobrej jakości dane z Outer Solar System Origins Survey. Stwierdziliśmy, że obecność podobnej do Ziemi planety (o masie od 1,5 do 3 mas Ziemi), znajdującej się na odległej (półoś wielka ok. 250–500 j.a., peryhelium ok. 200 j.a.) orbicie o nachyleniu orbity wynoszącym ok. 30 stopni może wyjaśnić trzy podstawowe właściwości odległych obiektów z Pasa Kuipera: znaczącej populacji obiektów transneptunowych o orbitach poza wpływem grawitacyjnym Neptuna, znaczącą populację obiektów o wysokim nachyleniu orbity (> 45 stopni) oraz istnienie obiektów o wyjątkowo nietypowych orbitach (np. Sedna). Ponadto obecność proponowanej planety jest zgodna ze zidentyfikowanymi długoterminowo stabilnymi obiektami transneptunowymi, pozostającymi w rezonansie 2:1, 5:2, 3:1, 4:1, 5:1 i 6:1 z Neptunem. Ta populacja stabilnych obiektów jest często pomijana w innych badaniach, czytamy w artykule. Pas Kuipera znajduje się za orbitą Neptuna, w odległości 30–50 jednostek astronomicznych od Ziemi. Zawiera on wiele małych obiektów. To właśnie w nim znajduje się Pluton. Mianem obiektów transneptunowych określa się okrążające Słońce planetoidy znajdujące się poza orbitą Neptuna. « powrót do artykułu
  3. Teleskop Webba zaobserwował szczegóły zawierających krzemiany chmur w atmosferze odległej planety. W jej atmosferze bez przerwy dochodzi do mieszania, wznoszenia i opadania materiału w 22-godzinym cyklu. Wynikiem tego są tak olbrzymie zmiany jasności, że wspomniana planeta jest najbardziej zmiennym znanym nam obiektem o masie planetarnej. Naukowcy, na czele których stoi Brittany Miles z University of Arizona, zauważyli też wyjątkowo wyraźne sygnały świadczące o obecności wody, metanu i tlenku węgla oraz dowód na występowanie w atmosferze dwutlenku węgla. Tym samym Teleskop Webba wykrył największą liczbę molekuł zauważonych jednorazowo w atmosferze egzoplanety. Wspomniana egzoplaneta, VHS 1256 b, znajduje się w odległości 40 lat świetlnych od Ziemi o okrąża 2 gwiazdy. Okres jej obiegu wynosi ponad 10 000 lat. VHS 1256 b znajduje się około 4-krotnie dalej od swoich gwiazd, niż Pluton od Słońca. To czyni ją idealnym celem dla obserwacji za pomocą Webba. Dobiegające z niej światło nie miesza się ze światłem z jej gwiazd macierzystych, mówi Miles. Uczona dodaje, że w górnych partiach temperatura jej atmosfery sięga 830 stopni Celsjusza. Webb zauważył też dwa rodzaje ziaren krzemianów w chmurach. Mniejsze mogą być wielkości cząstek dymu, większe zaś są jak bardzo gorące miniaturowe ziarenka piasku. VHS 1256 b ma bardzo słabą grawitację, dlatego też chmury występują bardzo wysoko w jej atmosferze, co pozwala na ich obserwację. Drugą przyczyną tak gwałtownych zjawisk w atmosferze jest młody wiek planety. Naukowcy szacują, że uformowała się ona zaledwie 150 milionów lat temu i przez najbliższy miliard lat będzie się schładzała i zmieniała. Wiele z cech, które zaobserwowano na VHS 1256 b zauważono wcześniej na innych planetach. Jednak w ich przypadku wymagało to wielu obserwacji za pomocą różnych teleskopów. Tutaj zaś Teleskop Webba dostarczył wszystkich informacji jednocześnie. A to nie wszystko. Naukowcy uważają, że przez najbliższe miesiące i lata, analizując dane dostarczone przez Webba, będą zdobywali kolejne informacje. Mamy tutaj olbrzymią ilość danych uzyskanych w niedługim czasie. Czujemy olbrzymi potencjał i mamy nadzieję na wiele odkryć w danych, zebranych w ciągu zaledwie kilku godzin obserwacji, cieszy się Beth Biller z Uniwersytetu w Edynburgu. « powrót do artykułu
  4. Teleskop Webba wykonał pierwsze zdjęcia planety pozasłonecznej. Na fotografiach widzimy gazowego olbrzyma HIP65426b. To planeta o masie od 5 do 10 razy większej od Jowisza, która powstała zaledwie 15–20 milionów lat temu. Znajduje się w odległości 385 lat świetlnych od Ziemi. Na czele zespołu badawczego, który wykonał zdjęcia, stał profesor Sasha Hinkley z University of Exeter. To bardzo ważny moment nie tylko dla Webba, ale dla astronomii. Dzięki Webbowi, obserwując za jego pomocą skład chemiczny planet, możemy bowiem opisywać zjawiska fizyczne na nich zachodzące, stwierdza uczony. Planeta została odkryta w 2017 roku za pomocą urządzenia SPHERE na Very Large Telescope. Dysponowaliśmy jedynie jej obrazami wykonanymi w krótkich falach podczerwieni, które pokazywały dość wąski zakres emisji z planety. Większość planet pozasłonecznych wykrywamy metodami pośrednimi, np. rejestrując regularne spadki jasności ich gwiazd, świadczące o tym, że na tle gwiazdy przeszła planeta. Wykonanie bezpośredniego obrazowania planety jest znacznie trudniejszym wyzwaniem, gdyż gwiazdy są wielokrotnie jaśniejsze od planet, więc ich blask przesłania nam krążące wokół nich planety. W przypadku HIP65426b różnica jasności między planetą a jej gwiazdą wynosiła od kilku do ponad 10 tysięcy. Nowe zdjęcia wykonano w kilku różnych zakresach podczerwieni: 3,00 mikrometrów (to zdjęcie wykonało urządzenie NIRCam), 4,44 mm (NIRCam), 11,4o mm (MIRI) oraz 15,50 (MIRI). Fotografii takich nie można wykonać z Ziemi, gdyż przeszkadza światło podczerwone emitowane przez naszą atmosferę. Bezpośrednie obrazowanie planety było możliwe dzięki temu, że znajduje się ona 100-krotnie dalej od swojej gwiazdy macierzystej niż Ziemia od Słońca. Do pozwoliło Webbowi odróżnić ją od gwiazdy. Instrumenty NIRCam i MIRI są wyposażone w koronografy. To zestaw niewielkich masek, które blokują światło gwiazd, pozwalając dojrzeć obiekty, które w innym przypadku byłyby niewidoczne przez blask gwiazdy. « powrót do artykułu
  5. Teleskop Hubble'a sfotografował protoplanetę podobną do Jowisza, która formuje się w wyniku „intensywnego i gwałtownego” procesu. Obserwacje Hubble'a wspierają mniej popularną z hipotez o tworzeniu się planet, tę mówiącą o niestabilności dysku protoplanetarnego. Nowo tworząca się planeta krąży wokół gwiazdy, której wiek astronomowie szacują na zaledwie 2 miliony lat. Dla przypomnienia, Układ Słoneczny liczy sobie około 4,6 miliarda lat. Wszystkie planety powstają z dysków protoplanetarnych, dysków materiału krążącego wokół gwiazd. Dominująca hipoteza dotycząca formowania się gazowych olbrzymów jak Jowisz mówi, że powstają one w wyniku stopniowego zlepiania się materiału krążącego w dysku protoplanetarnym. Materiał, od miniaturowych ziaren pyłu po wielkie bloki skalne, zderza się i zlepia. Z czasem powstaje jądro, wokół którego gromadzi się gaz z dysku. Zgodnie zaś z alternatywną, mniej popularną, hipotezą, gdy dysk protoplanetarny się ochładza, grawitacja powoduje jego gwałtowne rozpadnięcie się na fragmenty o masie planet. Nowo odkryta planeta, AB Aurigae b, jest około 9-kronie bardziej masywna od Jowisza i krąży wokół gwiazdy w odległości dwukrotnie większej niż odległość między Plutonem a Słońcem. Przy tak wielkiej odległości uformowanie się planety ze zderzającego się i zlepiającego materiału musiałoby trwać niezwykle długo. O ile w ogóle by do tego doszło. Dlatego też naukowcy sądzą, AB Aurigae b powstaje w wyniku niestabilności dysku. Mamy więc tutaj do czynienia z potwierdzeniem mniej popularnego modelu tworzenia się planet. Powyższe badania zostały wykonane za pomocą dwóch instrumentów znajdujących się na pokładzie Teleskopu Hubble'a, a uzyskane wyniki porównano z danymi z japońskiego Subaru Telescope na Mauna Kea na Hawajach. Zinterpretowanie zjawisk zachodzących w tym układzie jest niezwykle trudne. Dlatego między innymi potrzebowaliśmy Hubble'a. Dobrej jakości zdjęcie pozwala nam lepiej odróżnić światło z dysku i z planety, mówi główny autor badań, Thayne Currie. Uczony dodaje, że przejrzano archiwa zdjęć Hubble'a i znaleziono w nich liczne zdjęcia AB Aurigae b wykonane w różnych długościach fali. Tworzą one spójny obraz, dostarczając silnych dowodów. Nowe odkrycie to silny dowód na poparcie hipotezy mówiącej, że niektóre gazowe olbrzymy powstają w wyniku niestabilności dysku. Tak naprawdę to grawitacja jest tym, co się ostatecznie liczy, a pozostałości po formowaniu się gwiazd w ten czy inny sposób – za pośrednictwem grawitacji – łączą się, tworząc planety, mówi Alan Boss z Carnegie Institution of Science w Waszyngtonie. « powrót do artykułu
  6. Astronomowie potwierdzili, że wokół Proximy Centauri, gwiazdy najbliższej Słońcu, krąży nieznana dotychczas planeta. To trzecia planeta Proximy Centauri. Z dotychczas zdobytych danych wynika, że jej masa to zaledwie 25% masy Ziemi, jest zatem jedną z najlżejszych znanych nam egzoplanet. Odkrycie to pokazuje, że najbliższy nam sąsiad może zawierać sporo interesujących światów. Znajdują się w odległości, z której możemy je badać, a w przyszłości eksplorować, mówi główny autor badań, João Faria z Instituto de Astrofísica e Ciências do Espaço w Portugalii. Nowa planeta, Proxima d, znajduje się w odległości około 4 milionów kilometrów od swojej gwiazdy. To 10-krotnie bliżej niż odległość pomiędzy Merkurym a Słońcem i niemal 40-krotnie bliżej niż między Słońcem a Ziemią. Mimo tak niewielkiej odległości Proxima d krąży się w ekosferze swojej gwiazdy, czyli takiej odległości, która pozwala na istnienie wody w stanie ciekłym na jej powierzchni. Czas obiegu nowo odkrytej planety wokół Proximy Centauri wynosi zaledwie 5 dni. Już wcześniej znaliśmy dwie planety na orbitach wokół Proximy Centauri. Proxima b ma masę porównywalną z masą Ziemi, znajduje się w ekosferze i obiega gwiazdę w ciągu 11 dni. Druga z nich to wciąż niepotwierdzona Proxima c, superziemia lub gazowy olbrzym o okresie orbitalnym wynoszącym aż 5 lat. Znajduje się poza ekosferą. Proxima b została odkryta w 2016 roku, a odkrycie ostatecznie potwierdzono w roku 2020. Proximę d zauważono po raz pierwszy roku 2019, a teraz potwierdzono, że obserwowane spadki jasności gwiazdy nie są spowodowane jej zmiennością, a wynikają z obecności planety. Proxima d to najlżejsza egzoplaneta odnaleziona metodą analizy prędkości radialnej. Technika ta polega na badaniu chybotania gwiazdy pod wpływem oddziaływania planety. To niezwykle ważne osiągnięcie. Pokazuje bowiem, że technika analizy prędkości kątowej może pomóc w odkryciu nieznanej dotychczas populacji lekkich planet podobnych do Ziemi. Spodziewany się, że to najbardziej rozpowszechniona we wszechświecie klasa planet i potencjalnie może na nich istnieć życie podobne do ziemskiego, stwierdził Pedro Figueira z Europejskiego Obserwatorium Południowego w Chile. Mimo, że Proxima Centauri znajduje się w odległości „zaledwie” 4 lat świetlnych od Ziemi, to obecnie możemy ją jedynie obserwować. Jednak warto przypomnieć, że w 2017 roku niemieccy naukowcy zaproponowali trwającą 150 lat misję do Alfa Centauri i Proximy b, a kilka miesięcy później pojawiła się informacja, że o wysłaniu pojazdu do Proximy Centauri myśli też NASA. Przed dwoma laty zaś naukowcy obliczyli, kiedy wysłane w latach 70. sondy Pioneer i Voyager dotrą do gwiazd innych niż Słońce. « powrót do artykułu
  7. Jacques Kluska i jego zespół z Katolickiego Uniwersytetu w Leuven (KU Leuven) znaleźli dowody wskazujące, że stare gwiazdy w układach podwójnych mogą tworzyć planety. Podczas prowadzonych w podczerwieni obserwacji naukowcy zauważyli 10 systemów, w których w dyskach protoplanetarnych prawdopodobnie uformowały się wielkie planety. Jeśli odkrycie się potwierdzi, będziemy musieli ponownie przemyśleć teorie dotyczące narodzin planet. Dyski protoplanetarne do olbrzymie struktury z gazu i pyłu otaczające rodzące się gwiazdy. Dzięki ich obserwacjom wiemy, w jaki sposób powstają planety. Wszystko rozpoczyna się od stopniowego łącznia się materii w dyskach. Z czasem zlepia się jej coraz więcej, powstaje coraz większy obiekt, który dosłownie rzeźbi w dysku. Z czasem rodzi się planeta, a tam, gdzie krąży wokół gwiazdy, widać wyraźnie mniej materiału w dysku protoplanetarnym. Ten brakujący materiał utworzył planetę. Obserwując więc dyski protoplanetarne z takimi wyraźnymi przerwami w materiale, możemy odnajdować tworzące się wokół nich planety. Z obserwacji dysków protoplanetarnych wokół młodych gwiazd wiemy, że emisja w podczerwieni z tych dysków spada w miarę formowania się w nich planet. Jednak dyski protoplanetarne istnieją nie tylko wokół młodych gwiazd. Zaobserwowano je też wokół starych układów podwójnych, w skład których wchodzi biały karzeł. To pozostałość gwiazdy, która odrzuciła swoje zewnętrzne warstwy. I to właśnie te warstwy tworzą „dysk protoplanetarny drugiej generacji” wokół takich systemów. Kluska i jego zespół obserwowali emisję z 85 starych układów podwójnych w Drodze Mlecznej. Zauważyli, że w przypadku 10 z nich emisja w podczerwieni była niższa niż powinna. To zaś sugeruje, że mogą się tam tworzyć planety. To jednak nie wszystkie wskazówki. Okazało się bowiem, że na powierzchni białych karłów w tych systemach występuje mniejszy odsetek metali trudnotopliwych – m.in. niobu, molibdenu, wolframu, tantalu i renu – niż zwykle. To wskazuje, że metale te mogły wejść w skład tworzącej się planety, zamiast opaść na powierzchnię gwiazdy. Belgijscy uczeni chcą teraz wykorzystać teleskopy Europejskiego Obserwatorium Południowego, za pomocą których spróbują dojrzeć ewentualne planety tworzące się w dyskach protoplanetarnych starych układów podwójnych. Jeśli im się to uda, będą mogli badać tworzenie się „planet drugiej generacji”. « powrót do artykułu
  8. Vincent Bourrier z Uniwersytetu w Genewie stoi na czele międzynarodowego zespołu naukowego, który zauważył, że nieznany obiekt musiał wpłynąć na orbity dwóch planet pozasłonecznych. Są one bowiem odchylone od równika gwiazdy aż o 90 stopni. Gwiazdy i ich planety powstają z tego samego obracającego się dysku pyłu i gazu. Dlatego też planety powinny obiegać swoją gwiazdę w płaszczyźnie jej równika. Oczywiście od tej reguły istnieją mniejsze lub większe odstępstwa. W Układzie Słonecznym orbity planet są odchylone od płaszczyzny co najwyżej o kilka stopni. Wyróżnia się tutaj Pluton. Orbita tej planety karłowatej odchylona jest od płaszczyzny równika Słońca o 17 stopni. Jednak to niewiele w porównaniu z tym, o czym właśnie donieśli uczeni ze Szwajcarii, Włoch, Niemiec i Kanady. W 2019 roku astronomowie zauważyli, że dwa „mini Neptuny” krążące wokół gwiazdy HD 3167 mają orbity odchylone aż o 90 stopni. Wówczas nie byli w stanie zbadać orbity trzeciej, mniejszej planety. Dokonał tego właśnie zespół Bourriera. Naukowcy wykorzystali dwa instrumenty należące do Europejskiej Agencji Kosmicznej: spektrograf ESPRESSO stanowiący część Very Large Telescope w Chile oraz teleskop kosmiczny CHEOPS. Dzięki nim stwierdzili, że superZiemia HD3167b jest odchylona od płaszczyzny równika swojej gwiazdy zaledwie o kilka stopni. Obiega ona ją w ciągu 23 godzin. Innymi słowy orbita HD 3167b jest prostopadła względem orbit dwóch większych planet. To zaś sugeruje, ze orbity dwóch zewnętrznych planet zostały znacząco odchylone przez jakiś nieznany obiekt. Bourrier i jego zespół chcą teraz rozszerzyć swoje poszukiwania w nadziei, że znajdą kolejnego towarzysza HD 3167, odpowiedzialnego za odchylenie orbit obu planet. Tego typu badania mogą nam wiele powiedzieć o historii układów planetarnych oraz o wczesnej ewolucji orbit planet. Więcej informacji na temat niezwykłego układu planetarnego znajdziemy w artykule The Rossiter–McLaughlin effect revolutions: an ultra-short period planet and a warm mini-Neptune on perpendicular orbits. « powrót do artykułu
  9. W odległości 1300 lat świetlnych od Ziemi, w Gwiazdozbiorze Oriona znajduje się układ GW Orionis. Składa się on z młodych gwiazd otoczonych dyskiem protoplanetarnym. Dwie krążą blisko wokół siebie, a trzecia okrąża je obie. Jednak tym, co najbardziej przykuło uwagę astronomów jest dysk. I to nie tylko ze względu na swój niezwykły kształt, ale i możliwość, że znajduje się w nim planeta krążąca wokół trzech gwiazd. Nietypowy dysk złożony jest z trzech koncentrycznych kręgów. Żaden z nich nie jest zbieżny z orbitą żadnej gwiazd, a najbardziej zewnętrzny z nich nie jest nawet zbieżny z oboma wewnętrznymi dyskami. Jest on nietypowo odchylony i kołysze się się w miarę wirowania wokół gwiazd. Naukowcy z USA, Kanady, Australii i Wielkiej Brytanii przyjrzeli się GW Orionis, chcąc sprawdzić, z jakiego powodu dysk protoplanetarny został podzielony na trzy wyraźnie oddzielne części. Obserwowane przerwy w dysku mogły być bowiem wywołane ruchem gwiazd, które otacza. Gdy jednak uczeni przeprowadzili modelowanie tego, co dzieje się w badanym systemie, okazało się, że wpływ gwiazd nie doprowadziłby do takiego rozpadnięcia się dysku. Zdaniem naukowców, możliwym wyjaśnieniem istnienia dysku o tak niezwykłym kształcie i parametrach jest obecność jednej lub więcej masywnych planet, które uformowały się w GW Orionis. Uczeni przypominają, że co prawda znamy ponad 30 potrójnych systemów gwiezdnych, w których znajdują się planety, jednak żadna z planet nie krąży jednocześnie wokół trzech gwiazd. W GW Orionis może zachodzić właśnie taki przypadek. Jeśli rzeczywiście wokół całej trójki krąży planeta lub planety, to należy ich szukać w odległości 100 jednostek astronomicznych od centrum układu (1 j.a. to średnia odległość pomiędzy Ziemią a Słońcem). Same gwiazdy w GW Orionis są bardzo blisko siebie. Wspomniana para oddalona jest zaledwie o 1 j.a., a trzecia z gwiazd okrąża parę w odległości 8 j.a. od centrum systemu. Naukowcy zauważają, że znalezienie planet w układzie tak złożonym jak GW Orionis nie będzie łatwe. Tak czy inaczej, potrzebne są kolejne obserwacje tego systemu. Badania zostały szczegółowo opisane na łamach Monthy Notices of the Royal Astronomical Society. « powrót do artykułu
  10. Naukowcy z Western University odkryli trzy najszybciej obracające się brązowe karły, obiekty zwane czasem nieudanymi gwiazdami. To masywne obiekty znajdujące się pomiędzy planetami a gwiazdami. Są bardziej masywne niż planety, ale zbyt mało masywne by mogły zachodzić w nich przemiany wodoru w hel. Teraz Megan Tannock i Stanimir Metchey informują o zidentyfikowaniu brązowych karłów, które obracają się blisko limitu prędkości, powyżej którego mogą zostać rozerwane. Odkryte przez Kanadyjczyków obiekty mają średnicę podobną do Jowisza, ale są od niego od 40 do 70 razy bardziej masywne. Każdy z nich wykonuje pełny obrót w ciągu zaledwie godziny. Dotychczas najszybszy znany brązowy karzeł obracał się w ciągu 1,4 godziny. Jowiszowi zaś pełen obrót zajmuje 10 godzin. Z dokonanych obliczeń wynika, że prędkość obrotowa wspomnianych karłów wynosi aż 100 km/s czyli 360 000 km/h. Dla porównania, Jowisz obraca się z prędkością 12,6 km/s (45 360 km/h). Wydaje się, że dotarliśmy do granicy prędkości obrotowej brązowych karłów, mówi Tannock. Pomimo intensywnych poszukiwań naukowcom nie udało się dotychczas znaleźć szybciej obracających się brązowych karłów. Szybszy obrót mógłby spowodować ich rozerwanie. Wspomniane brązowe karły zostały odkryte przez teleskop 2MASS, który działał do 2001 roku. Kanadyjczycy dokonali pomiarów prędkości karłów wykorzystując dane z Teleskopu Kosmicznego Spitzera (zakończył on swoją misję w styczniu 2020), a następnie potwierdzli je za pomocą naziemnych Gemini North i Magellan. Brązowe karły, podobnie jak gwiazdy i planety, obracają się wokół własnej osi. W miarę jak stygną i się kurczą, obracają się coraz szybciej. Dotychczas udało się zmierzyć prędkość obrotową około 80 tego typu obiektów. Są wśród nich takie, które wykonują pełny obrót poniżej 2 godzin, jak i takie, które potrzebują na to kilkudziesięciu godzin. Przy takiej różnorodności tempa obrotu naukowców zdziwił fakt, że trafili na trzy obiekty obracają się niemal z tą samą prędkością około 1 obrotu na godzinę. Właściwości tej nie można w tej chwili łączyć ze wspólnymi znanymi cechami fizycznymi. Jeden z karłów jest gorący, drugi zimy, a temperatura trzeciego mieści się pomiędzy tymi dwoma. Różnica temperatur wskazuje zaś, że są w różnym wieku. Uczeni nie wykluczają, że to przypadkowa zbieżność. Karły niemal osiągnęły maksymalną prędkość obrotu. Jeśli ją przekroczą, zostaną rozerwane przez siły odśrodkowe. Specjaliści uważają, że brązowe karły składają się głównie z wodoru i helu. Są też znacznie bardziej gęste niż olbrzymie planety. Wodór w jądrach brązowych karłów jest poddany tak wysokiemu ciśnieniu, że zachowuje się jak metal. Występują w nim swobodne elektrony. Zmieniają one sposób dystrybucji ciepła we wnętrzu karła, a wraz z bardzo szybkim obrotem może to wpływać na rozkład w nim masy. Stan wodoru czy jakiegokolwiek innego gazu poddanego tak wielkim ciśnieniom to dla nas zagadka. Nawet w najbardziej zaawansowanych laboratoriach trudno jest uzyskać taki stan materii, stwierdza Metchev. Obecne modele mówią, że maksymalna prędkość obrotowa brązowego karła to 50 do 80 procent szybciej niż 1 obrót na godzinę. Być może jednak modele te nie oddają całego obrazu. Może istnieć nieznanym nam czynnik, który powoduje, że brązowe karły nie mogą obracać się szybciej niż te, które zaobserwowaliśmy, dodaje Metchev. « powrót do artykułu
  11. Dziewiąta Planeta, zwana też Planetą X, to wciąż hipotetyczny nieznany członek Układu Słonecznego. Jej istnienie zaproponowano przed kilku laty, by wyjaśnić nietypowe orbity niektórych obiektów poza Neptunem. Dziewiątej wciąż nie znaleziono, ale właśnie dowiadujemy się o odkryciu planety, która może być podobna do naszej Dziewiątej. Niezwykłą planetę zauważono w 2013 roku w dużej odległości od liczącej sobie zaledwie 15 milionów lat gwiazdy podwójnej HD 106906. Jest jedyną znaną nam planetą w tak olbrzymiej odległości od gwiazdy. Planeta ta jest znacznie bardziej masywna, niż proponowana masa Dziewiątej. O ile bowiem Planeta X może mieć masę 10-krotnie większą od Ziemi, to planeta z 2013 roku jest 11-krotnie bardziej masywna od Jowisza, czyli ma 3500 mas Ziemi. Znaleziono ją znacznie powyżej płaszczyzny układu planetarnego, odchyloną od niego o 21 stopni. Jednak dotychczas nie wiedziano, czy planeta ta stanowi część tego układu i jest powiązana grawitacyjnie jego gwiazdą podwójną czy też jest właśnie z niego wyrzucana. Teraz na łamach Astronomical Journal opublikowano artykuł z którego dowiadujemy się, że HD 106906 b krąży wokół układu podwójnego HD 106906. Na podstawie analizy pozycji tej planety na przestrzeni ponad 14 lat naukowcy stwierdzili, że planeta okrąża swoje gwiazdy w ciągu 15 000 lat, wędrując po mocno eliptycznej orbicie. Zauważenie planety na tak niezwykłej orbicie to potwierdzenie, że planety mogą mieć niezwykle wydłużone i nietypowo nachylone orbity. A to oznacza, że nic nie stoi na przeszkodzie, by taką orbitę miała też Dziewiąta Planeta. O ile istnieje. HD 106906 zyskała swoją niezwykłą orbitę na wczesnym etapie ewolucji układu planetarnego. Bardzo wcześnie dzieje się coś, co wyrzuca planety i komety na zewnątrz, a później pojawiają się przechodzące obok gwiazdy, które stabilizują całość, mówi jeden z autorów badań, Paul Kalas z Uniwersytetu Kalifornijskiego w Berkeley. Powoli gromadzimy dowody potrzebne nam do zrozumienia dużego zróżnicowania planet pozasłonecznych oraz tego, jak się to ma do niewyjaśnionych jeszcze zagadek Układu Słonecznego. HD 106906 to młody układ podwójny znajdujący się w kierunku Gwiazdozbioru Krzyża Południa. W ostatnich latach był on intensywnie badany, gdyż posiada duży dysk pyłu i gazu, w którym mogą się rodzić planety. Na zdjęciu wykonanym w 2013 roku przez Teleskop Magellana w Chile zauważono planetę, świecącą od własnego wewnętrznego ciepła i znajdującą się w odległości 737 jednostek astronomicznych od układu podwójnego. To 25-krotnie dalej niż odległość Neptuna od Słońca. Badania z 2015 roku wykazały, że w przeszłości planeta znajdowała się bliżej układu podwójnego, ale została wyrzucona w wyniku interakcji z gwiazdami. Problem w tym, że planeta mogła zostać całkowicie wyrzucona ze swojego układu. Do ustabilizowania jej dodatkowej orbity potrzebna była jeszcze dodatkowa interakcja. Kalas i Robert De Rosa, który obecnie pracuje w Europejskim Obserwatorium Południowym, zaczęli szukać obiektów, z którymi mogło dojść do takiej interakcji i poinformowali, że zidentyfikowali kilkanaście gwiazd, które 3 miliony lat wcześniej mogły przechodzić w pobliżu układu HD 106906 stabilizując orbitę wyrzuconej planety HD 106906 b. Teraz, korzystając z danych z lat 2004–2018 Kalas, de Rosa i Meiji Nguyen donoszą, że planeta jest na stabilnej orbicie wokół układu podwójnego, a w badanym czasie przebyła mniej niż 1/1000 swojej orbity. Co więcej, potwierdzili, że orbita ta jest bardzo mocno – w zakresie od 36 do 44 stopni – odchylona od płaszczyzny układu. A jej peryhelium znajduje się odległości 500 jednostek astronomicznych. To zaś sugeruje, że nie ma ona żadnego wpływu na zewnętrzne planety układu. Jest to więc jej kolejne podobieństwo do Dziewiątej, która nie wpływa na pozostałych osiem planet krążących wokół Słońca. « powrót do artykułu
  12. Astronomowie z University of Warwick są współodkrywcami nowej klasy planet – ultragorących Neptunów. Co interesujące, pierwszy przedstawiciel tej klasy został znaleziony został w miejscu, gdzie planety rozmiarów Neptuna rzadko są znajdowane. Pierwszy ultragorący Neptun został odkryty w pobliżu gwiazdy LTT 9779. Obiega on ją w ciągu zaledwie 19 godzin. Jak obliczyli naukowcy, temperatura na powierzchni planety wynosi ponad 1700 stopni Celsjusza. Przy takiej temperaturze ciężkie pierwiastki jak żelazo mogą być jonizowane w atmosferze. To zaś stwarza unikatową okazję do badania składu chemicznego planet spoza Układu Słonecznego. Planeta LTT 9779B ma masę dwukrotnie większą od masy Neptuna, i jest o niego nieco większa. Ma zatem podobną gęstość. Stąd naukowcy wnioskują, że samo jej jądro ma masę 28 mas Ziemi, a jej atmosfera stanowi około 9% masy planety. Sam system liczy sobie 2 miliard y lat i ze względu na intensywne promieniowanie z gwiazdy nie należy planeta nie utrzyma swojej atmosfery zbyt długo. LTT 9779 to gwiazda podobna do Słońca położona w odległości 260 lat świetlnych od Ziemi. Jest bardzo bogata w metale, w jej atmosferze znajduje się dwukrotnie więcej żelaza niż w atmosferze Słońca. To zaś może wskazywać, że krążąca wokół niej planeta była w przeszłości znacznie większym gazowym olbrzymem, gdyż „lubią one” gwiazdy z dużą ilością żelaza. « powrót do artykułu
  13. Astronomowie z University of Wisconsin-Madison informują o prawdopodobnym znalezieniu nietkniętej olbrzymiej planety krążącej wokół białego karła. To sensacyjne odkrycie wskazuje, że planeta może przetrwać zniszczenie swojej gwiazdy. Biały karzeł WD 1856 – który jest zaledwie o 40% większy od Ziemi – stanowi część układu potrójnego znajdującego się w odległości około 80 lat świetlnych od Ziemi. Odkryta właśnie planeta wielkości Jowisza, WD 1856 b, jest około 7-krotnie większa od swojej gwiazdy i obiega ją w ciągu zaledwie 34 godzin. W jakiś sposób WD 1856 b zdołała znaleźć się blisko białego karła i pozostać w jednym kawałku, mówi profesor Andrew Vanderburg. W procesie tworzenia się białego karła, pobliskie planety zostają zniszczone. Wszystko, co później znajdzie się zbyt blisko, zostaje zwykle rozerwane przez potężne oddziaływanie grawitacyjne białego karła. Musimy sobie odpowiedzieć na pytanie, jak to się stało, że WD 1856 b znajduje się tak blisko, a mimo to jej los nie potoczył się według jednego z tych scenariuszy. Odkrycia niezwykłego systemu dokonano za pomocą teleskopów TESS i Spitzera. Znajduje się on w Gwiazdozbiorze Smoka. Planeta krąży tam wokół chłodnego Białego karła o średnicy zaledwie 18 000 kilometrów. Gwiazda może liczyć sobie nawet 10 miliardów lat i jest odległym członkiem układu potrójnego. Gdy gwiazdy podobne do Słońca, a taki właśnie jest WD 1856, zużyją swoje paliwo, zaczynają zwiększać objętość stają się setki, a nawet tysiące razy większe niż wcześniej. Powstaje czerwony olbrzym, który wchłania i spopiela to, co znajduje się w jego sąsiedztwie. W końcu odrzuca on zewnętrzne warstwy, tracąc do 80% masy. Pozostaje gorące gęste jądro, biały karzeł. Gdyby planeta WD 1856 b znajdowała się w czasie procesu „puchnięcia” gwiazdy na swojej obecnej orbicie, musiałaby zostać przed nią wchłonięta. Jak wynika z obliczeń zespołu Vanderburga, by pozostać bezpieczną, musiałaby znajdować się co najmniej 50-krotnie dalej, niż obecnie. Od dawna wiemy, że gdy rodzi się biały karzeł, niewielkie odległe obiekty, jak asteroidy czy komety, mogą być przyciągane przez gwiazdę. Zwykle są rozrywane przez jej silną grawitację i tworzą dysk wokół gwiazdy, mówi Siyi Xu z Gemini Observatory na Hawajach. Mieliśmy pewne dane mówiące, że i planety mogą odbywać taką podróż, jednak po raz pierwszy widzimy planetę, która przetrwała ją nietknięta. Naukowcy nie potrafią na razie wyjaśnić obecności WD 1856 b tak blisko białego karła. Upewnili się za to, że obserwowany przez nich obiekt nie jest brązowym karłem.Obserwacje za pomocą różnych instrumentów wykazały, że nie emituje on własnego promieniowania, zatem najprawdopodobniej jest to duża planeta. Odkrycie planety blisko białego karła skłoniło też naukowców do przeprowadzenia symulacji dla scenariusza, w którym planetą taka jest skalista i ma wielkość Ziemi. Okazało się, że mogłaby na niej istnieć woda w stanie ciekłym. To zaś oznacza, że skoro planeta jest w stanie przetrwać tworzenie się białego karła i może wokół niego krążyć, to jeśli pojawiłyby się na niej warunki korzystne dla życia, to mogłyby one trwać miliardy la dłużej, niż się obecnie zakłada. Dodatkowe obliczenia wykazały, że Teleskop Kosmiczny Jamesa Webba będzie w stanie wykryć wodę i dwutlenek węgla w atmosferze takiej planety rejestrując zaledwie 5 jej przejść na tle gwiazdy macierzystej, a kombinację gazów mogących wskazywać na istnienie życia wykryje po zaledwie 25 przejściach. « powrót do artykułu
  14. Astronomowie poinformowali o zniknięciu planety wchodzącej w skład niezwykłego układu potrójnego Fomalhaut. Odkryta w 2008 roku planeta Fomalhaut b nagle przestała się pokazywać. Uczeni nie podejrzewają jednak, że spotkał ją ten sam los co platentę Supermana Krypton, która eksplodowała. Proponują znacznie prostsze wyjaśnienie. Jedna z hipotez zakłada, że obiekt, który po raz pierwszy sfotografowano w 2004 roku, nie był planetą, a wielką rozszerzającą się chmurą pyłu pochodzącą ze zderzenia dwóch wielkich obiektów w pobliżu gwiazdy. Takie zderzenia są niezwykle rzadkie i mielibyśmy wielkie szczęście, gdybyśmy ja zaobserwowali. Sądzimy, że Hubble przeprowadził właściwe obserwacje we właściwym miejscu, dzięki czemu mogliśmy obserwować tak niezwykłe wydarzanie, stwierdza Andras Gaspar z University of Arizona. Obiekt Fomalhaut b został odkryty w 2008 roku na podstawie danych zebranych w roku 2004 i 2006. Przez lata obserwowano go za pomocą Teleskopu Hubble'a. W przeciwieństwie do wielu innych planet pozasłonecznych, Fomalhaut b można było obserwować bezpośrednio. Jednak już od samego początku domniemana planeta stanowiła sporą zagadkę dla specjalistów. W przeciwieństwie bowiem do innych bezpośrednio obserwowanych planet, obiekt ten był niezwykle jasny w świetle widzialnym, ale nie można było wykryć żadnej emisji w podczerwieni, która by z niego pochodziła. Astronomowie stwierdzili wówczas, że niezwykła jasność pochodzi z otaczającej planetę olbrzymiej chmury pyłu. Również orbita Fomalhaut b była nietypowa. Nasze badania, w ramach których przeanalizowaliśmy wszystkie archiwalne dane z Hubble'a dotyczące tego obiektu, wskazywały, że ma on pewne cechy, które połączone razem wskazywały, iż taka planeta może nie istnieć, dodaje Gaspar. Gwoździem do trumny dla planety okazały się zdjęcia wykonane przez Hubble'a w 2014 roku. Okazało się, że Fomalhaut b zniknął. Naukowcy sądzą, że na krótko przed pierwszymi obserwacjami doszło do do zderzenia dwóch dużych obiektów. Powstała rozszerzająca się chmura pyłu, która składa się z drobinek wielkości 1 mikrometra. Obecnie jest ona niewykrywalna dla Hubble'a. Z obliczeń wynika, że obecnie może być ona większa niż obszar zakreślony orbitą Ziemi wokół Słońca. Zdaniem Gaspara, obiekty, które się zderzyły tworząc Fomalhaut b to dwie komety o średnicy około 200 kilometrów każda. Modele obliczeniowe, na podstawie których wysnuł taką hipotezę, wykazały, że zgadza się ona ze wszystkimi charakterystykami Fomalhaut b, od tempa rozszerzania się, po zniknięcie i trajektorię chmury. Z obliczeń wynika też, że do takiego zderzenia dochodzi w systemie Fomalhaut nie częściej niż raz na 200 000 lat. Naukowcy już zapowiadają, że w przyszłości mają zamiar wykorzystać Teleskop Kosmiczny Jamesa Webba (JWST) do obserwacji systemu Fomalhaut. Dzięki temu będą w stanie bezpośrednio obrazować wewnętrzne regiony systemu, obserwować pas asteroid w tym systemie oraz poszukać w nim naprawdę istniejących planet. « powrót do artykułu
  15. Najbliższa Słońcu gwiazda, Proxima Centauri, posiada prawdopodobnie nie jedną, a dwie planety. Druga z nich, Proxima c, jest co najmniej 6-krotnie bardziej masywna od Ziemi i obiega gwiazdę w ciągu 5,2 ziemskiego roku. Odkrycie wymaga jeszcze potwierdzenia, ale wszystko wskazuje na to, Proxima b, którą odkryto przed 4 laty, nie jest samotna. Specjaliści uważają, że odkrycie Proximy c pozwoli im lepiej zrozumieć, w jaki sposób wokół gwiazd o niewielkiej masie formują się planety o niewielkiej masie, szczególnie takie, które zaczynają swoje istnienie poza zewnętrznymi granicami ekosfery. Proxima Centauri to gwiazda najbliższa Słońcu. Znajduje się od nas w odległości zaledwie 4,2 roku świetlnego. Od dawna przyciąga wyobraźnię, gdyż jeśli kiedykolwiek ludzkość wyśle pojazd w kierunku innej gwiazdy, będzie to najprawdopodobniej właśnie Proxima Centauri. Już zresztą pojawiły się informacje, że NASA rozpoczęła planowanie takiej misji. Proxima Centauri jako cel międzygwiezdnej misji kosmicznej jest też o tyle pociągająca, że pierwsza z jej odkrytych planet, Proxima b, znajduje się w ekosferze gwiazdy, zatem może na niej istnieć woda w stanie ciekłym. Teraz układ stał się jeszcze bardziej interesujący ze względu na możliwe istnienie Proximy c. Utworzenie się superZiemi daleko poza ekosferą to poważne wyzwanie dla modeli tworzenia się planet, zgodnie z którymi granica ekosfery to optymalne miejsce tworzenia się superZiem. Istnienie Proximy c będzie wymagało poprawienia modeli lub też uznania, że dysk protoplanetarny wokół Proximy Centauri był znacznie cieplejszy niż się zwykle sądzi. « powrót do artykułu
  16. Transiting Exoplanet Survey Satellite (TESS) odkrył swoją pierwszą planetę wielkości Ziemi znajdującą się w ekosferze gwiazdy. Istnienie TOI 700 d została potwierdzona za pomocą Teleskopu Kosmicznego Spitzera. TOI 700 do jedna z niewielu znanych nam planet, która znajduje się w ekosferze swojej gwiazdy i jest wielkości Ziemi. "TESS został zaprojektowany i wystrzelony z myślą o poszukiwaniach planet wielkości Ziemi krążących woków pobliskich gwiazd. Planety towarzyszące niedalekim gwiazdom są łatwiejsze do odnalezienia. Odkrycie TOI 700 d to znaczące osiągnięcie dla TESS. Potwierdzenie wielkości planety i jej obecności w ekosferze to z kolei osiągnięcie Spitzera, teleskopu, którego misja ma się zakończyć 30 stycznia bieżącego roku", mówi Paul Hertz, dyrektor wydziału astrofizyki w kwaterze głównej NASA w Waszyngtonie. TESS monitoruje przez 27 dni wybrany sektory nieboskłonu. Poszukuje zmian jasności gwiazd, które mogą świadczyć o przechodzeniu planet na ich tle. TOI 700 to niewielka chłodna gwiazda typu M położona w odległości około 100 lat świetlnych w południowej części Gwiazdozbioru Złotej Ryby. Ma o 60% mniejszą masę od Słońca, a jej powierzchnia jest dwukrotnie chłodniejsza. Gwiazdę widać na 11 z 13 sektorów obserwowanych przez TESS w pierwszym roku misji. Dzięki tak długiemu czasowi obserwacji udało się zauważyć trzy planety przechodzące na jej tle. Początkowo gwiazda TOI 700 została zakwalifikowana jako bardziej podobna do Słońca, przez co jej planety wydawały się gorętsze i większe niż w rzeczywistości. Gdy dokonano korekt okazało się, że najbardziej zewnętrzna z planet jest wielkości Ziemi i znajduje się ekosferze. Co więcej, przez 11 miesięcy obserwacji nie zaobserwowano na gwieździe żadnych rozbłysków, co zwiększa szanse, że TOI 700 d ma stabilną atmosferę i warunki odpowiednie do życia. Najbardziej wewnętrzna planeta układu, TOI 700 b jest niemal dokładnie wielkości Ziemi, prawdopodobnie jest skalista i okrąża swoją gwiazdę w ciągu 10 dni. Kolejna z planet – TOI 700 c – ma średnicę 2,6 razy większą od średnicy Ziemi, jest prawdopodobniej gazowa, a jej czas obiegu wokół gwiazdy wynosi 16 dni. Znajdująca się w ekosferze TOI 700 d jest o 20% większa od naszej planety, obiega gwiazdę w ciągu 37 dni i otrzymuje z niej 86% energii jaką Ziemia otrzymuje od Słońca. Wszystkie planety prawdopodobnie charakteryzuje obrót synchroniczny, co oznacza, że jedna ich strona jest zawsze wystawiona w kierunku gwiazdy. Jako, że gwiazda TOI 700 jest jasna, znajduje się w pobliżu i nie zauważono na niej rozbłysków, jest ona bardzo dobrym celem kolejnych badań, pozwalających na precyzyjne pomiary masy. W niedalekiej zaś przyszłości powinno być możliwe zbadanie, czy planety mają atmosfery i jaki jest ich skład. « powrót do artykułu
  17. Międzynarodowa Unia Astronomiczna ogłosiła decyzję w sprawie nadania nowych nazw gwiazdom i planetom. Wśród nowych nazw znalazły się też polskie Solaris i Pirx, czyli gwiazda i krążąca wokół niej planeta, znajdujące się w odległości 161 lat świetlnych od Ziemi. Układ planetarny BD+14 4559 został odkryty przez zespół profesora Andrzeja Niedzielskiego z Centrum Astronomii UMK. Teraz oficjalna nazwa gwiazdy brzmi Solaris, a planety – Pirx. To nazwy znane z twórczości Stanisława Lema. Solaris jest mniejsza, mniej masywna i chłodniejsza od Słońca. Wokół niej krąży planeta Pirx o macie o 4% większej o masy Jowisza i promieniu 23% większym niż promień tej planety. Pirx znajduje się w odległości 0,78 jednostki astronomicznej (to odległość między Ziemią a Słońcem) od Solarisa. Obiega ją w ciągu 269 ziemskich dni. Polski układ planetarny można obserwować przez lornetkę. Znajduje się on w gwiazdozbiorze Pegaza przy granicy z konstelacją Delfina. Głosowanie, w ramach których nazwano Solaris i Pirksa, zostało zorganizowane z okazji 100. rocznicy istnienia Międzynarodowej Unii Astronomicznej. W ramach IAU100 NameExoWorlds każdy kraj na świecie otrzymał do nazwania układ składający się z jednej gwiazdy i jednej planety. Polacy wybrali Solaris i Pirksa. Z kolei Albańczycy nazwali swoją gwiazdę Ilyrian – pochodzą bowiem od Illirów – a planetę Arber, gdyż tak w średniowieczu nazywano mieszkańców Albanii. Z kolei mieszkańcy Bangladeszu postanowili, że gwiazda będzie nazywała się Timir („ciemność” w języku bengalskim), a planeta to Tondra („drzemka” w bengalskim). Finowie postawili zaś na mitologię. Horna to świat podziemny, a Hisi to lokalne duchy. Podobnie postąpili mieszkańcy Wybrzeża Kości Słoniowej, którzy swoją gwiazdę nazwali Nyamien (najwyższe bóstwo w mitologii ludu Akan), a planecie nadali imię Asye (bogini Ziemi w mitologii Akan). Z kolei nasi południowi sąsiedzi, Czesi, podążyli tą samą drogą, co Polacy. Gwiazda Absolutno i planeta Markopulos to nazwy z dzieł sci-fi Karela Capka. Pełną listę nowych nazw można znaleźć na stronie Międzynarodowej Unii Astronomicznej. « powrót do artykułu
  18. Administrator NASA, Jim Brindestine, na nowo rozpalił dyskusję o statusie Plutona. Przed 13 laty stracił on miano planety i został uznany planetą karłowatą. Szef NASA stwierdził, że powinien on być pełnoprawną planetą, gdyż posiada ocean pod powierzchnią, związki organiczne na powierzchni i własne księżyce. Dodał przy tym, że jeśli mielibyśmy na poważnie traktować wymóg, by za planety uznawać tylko te obiekty, które oczyściły swoją orbitę wokół Słońca, to powinniśmy obniżyć status wszystkich planet. To już drugi raz w ciągu ostatnich miesięcy, gdy Brindestine dopomina się o ponowne uznanie Plutona za planetę. Jestem tutaj, by Wam powiedzieć, że jako administrator NASA, sądzę, iż Pluton powinien być planetą, mówił do bijących mu brawo uczestników Międzynarodowego Kongresu Astronautycznego. Niektórzy ludzie argumentują, że aby zostać uznanym za planetę trzeba oczyścić swoją orbitę wokół Słońca. Hm.. jeśli to jest definicja, której mamy używać, to powinniśmy obniżyć status obecnych planet. Musielibyśmy uznać je za planety karłowate, gdyż żadna z nich nie oczyściła swojej orbity, stwierdził. W 2006 roku Międzynarodowa Unia Astronomiczna (IAU), opracowała definicję planety, zgodnie z którą za planetę można uznać obiekt, który – między innymi – oczyścił sobie orbitę, a zatem jest największą siłą grawitacyjną działającą na orbicie. Oznaczało to natychmiastowe zdegradowanie Plutona, gdyż wpływ na niego wywiera sąsiedni Neptun, ponadto Pluton dzieli orbitę z gazami i obiektami z Pasa Kuipera. Wielu jednak nie pogodziło się ze zmianą statusu Plutona. Jedną z takich osób jest właśnie Brindestine. Już w sierpniu mówił on, że jego zdaniem Pluton jest planetą. Słowa szefa NASA znajdują potwierdzenie w ubiegłorocznych badaniach przeprowadzonych przez uczonych z University of Central Florida. Ich zdaniem niesłusznie stracił on status planety. Naukowcy ci przeanalizowali literaturę naukową z ostatnich 200 lat i zauważyli, że od roku 1802 ukazały się zaledwie 4 publikacje, których autorzy stwierdzali, że planetą może być jedynie obiekt, który oczyścił swoją orbitę. Co więcej, posługiwali się przy tym argumentami, które obecnie są uznawane za nieprawidłowe. IAU próbuje nam powiedzieć, że podstawowy obiekt badań planetarnych, planeta, powinna być definiowana według kryteriów, których żaden naukowiec nie używa w swojej pracy. I w ten sposób poza rodzinę planet wyrzuca drugą najbardziej złożoną i interesującą planetę w Układzie Słonecznym, stwierdza Philip Metzger z University of Central Florida. Mamy ponad 100 świeżych przykładów, w których specjaliści używają słowo 'planeta' w sposób niezgodny z definicją IAU, a czynią tak, gdyż to funkcjonalnie użyteczne. Ta definicja jest naciągana. IAU nie określa, co oznacza oczyszczenie orbity. Jeśli weźmiemy to dosłownie, to planety nie istnieją, gdyż żadna z nich nie oczyściła swojej orbity. « powrót do artykułu
  19. W gwiazdozbiorze Pegaza znajduje się układ planetarny BD+14 4559. Został on odkryty przez polskich astronomów pracujących pod kierunkiem prof. Andrzeja Niedzielskiego z Centrum Astronomii UMK. Z okazji 100. rocznicy istnienia Międzynarodowej Unii Astronomicznej został zorganizowany konkurs IAU100 NameExoWorlds. W jego ramach każdy kraj na świecie otrzymał do nazwania układ składający się z jednej gwiazdy i jednej planety. Układ, który możemy nazwać znajduje się w odległości 161 lat świetlnych od Ziemi. Wokół mniejszej, mniej masywnej i chłodniejszej od Słońca gwiazdy krąży tam planeta o masie o 4% większej od masy Jowisza i promieniu o 23% większym niż promień Jowisza. Obiega ona gwiazdę w odległości 0,78 j.a. w ciągu 269 ziemskich dni. Gwiazdę BD+14 4559 można obserwować z Ziemi nawet przez lornetkę. Znajduje się ona w gwiazdozbiorze Pegaza przy granicy z konstelacją Delfina. Teraz każdy z nas może wziąć udział w głosowaniu nad nazwą dla gwiazdy i planety. Propozycje, które przeszły do drugiego etapu konkursu to: Geralt i Ciri, Jantar i Wolin, Piast i Lech, Polon i Rad, Solaris i Pirx, Swarog i Weles oraz Twardowski i Boruta. Głosowanie trwa do końca października. « powrót do artykułu
  20. Podczas narodzin i początków ewolucji układów planetarnych panują warunki zdecydowanie niesprzyjające powstaniu życia. W gromadach gwiazd, gdzie powstają takie układy, często dochodzi do bliskich spotkań pomiędzy ciałami niebieskimi i gwałtownych oddziaływań pomiędzy nimi. Jednak naukowcy z University of Sheffield znaleźli pewną pozytywną cechę tego gwałtownego okresu w życiu planet. Model opracowany przez studentkę Bethany Wootton i doktora Richarda Parkera pokazuje, że w tym okresie może dochodzić do sprzyjających powstaniu życia zmian w układach podwójnych. Naukowcy odkryli, że gdy z układem podwójnym gwiazd spotka się trzecia gwiazda, jej oddziaływanie może spowodować, że gwiazdy z układu podwójnego przybliżą się do siebie, a to spowoduje rozszerzenie się ekosfery wokół tych gwiazd. Ekosfera, zwana też „strefą Złotowłosej”, to zakres takich odległości od gwiazdy macierzystej, gdzie na znajdujących się tam planetach może istnieć woda w stanie ciekłym. Nie jest tam ani za gorąco ani za zimno. Na planetach znajdujących się w ekosferze z większym prawdopodobieństwem mogą powstać molekuły niezbędne do utworzenia życia niż na planetach spoza ekosfery. Około 1/3 gwiazd w naszej galaktyce to gwiazdy w układach podwójnych i większych. Im młodsze gwiazdy, tym więcej takich układów. Wootton i Parker sprawdzali, jak zmieniają się ekosfery w takich układach. Symulacje komputerowe wykazały, że w typowej gromadzie gdzie rodzą się gwiazdy istnieje 350 układów podwójnych, a 20 z nich to układy, w których gwiazdy zostały do siebie zbliżone przez interakcję z trzecią gwiazdą i tam ekosfera jest większa niż w typowym układzie podwójnym. Nasz model pokazuje, że w ekosferach układów podwójnych znajduje się więcej planet niż przypuszczaliśmy, a to zwiększa szanse na pojawienie się życia. Tak więc ulubiony scenariusz autorów science-fiction, gdzie nad zamieszkałym światem świecą dwa słońca, jest bardziej prawdopodobny niż się wydaje, mówią uczeni. W następnym etapie badań naukowcy chcą sprawdzić, czy negatywne skutki procesu zbliżania do siebie gwiazd układu podwójnego są niwelowane przez skutki pozytywne. Parker i jego zespół sprawdzają obecnie, czy wewnętrzne ciepło generowane przez Ziemię nie pochodzi stąd, że w pobliżu narodzin młodego Słońca doszło do eksplozji supernowej. Takie wydarzenie byłoby katastrofalne dla istniejącego życia na Ziemi, jednak z drugiej strony mogło zapewnić warunki niezbędne do jego pojawienia się. « powrót do artykułu
  21. Po 10 latach udało się potwierdzić.. istnienie pierwszej egzoplanety zaobserwowanej przez Teleskop Kosmiczny Keplera. Ten niezwykle zasłużony instrument naukowy odkrył tysiące planet, a kolejne tysiące wciąż czekają na potwierdzenie. Jednak pierwszy zaobserwowany przez niego obiekt, nazwany obecnie Kepler-1658b, musiał czekać niemal 10 lat zanim potwierdzono, że to rzeczywiście jest planeta. Teleskop Kosmiczny Keplera został wystrzelony 6 marca 2009 roku, a jego misja zakończyła się w listopadzie 2018 roku, gdy urządzeniu wyczerpało się paliwo. Jego zadaniem była obserwacja tysięcy gwiazd i rejestrowanie zmian ich jasności. Regularne okresowe spadki jasności gwiazdy mogą świadczyć o tranzytach, czyli o przejściach planet na tle gwiazdy obserwowanej z Ziemi. Jako, że spadki jasności mogą być powodowane też innymi czynnikami, specjaliści muszą szczegółowo analizować dane, zanim potwierdzą, że rzeczywiście odkryto nową planetę. Dotychczas potwierdzono odkrycie przez Keplera niemal 3000 planet, a kolejne tysiące czekają na potwierdzenie. Paradoksalnie, pierwszy kandydat na planetę zarejestrowany przez Keplera, został potwierdzony dopiero teraz. Prace nad potwierdzeniem, że Kepler-1658b to rzeczywiście planeta zajęły tak długo, gdyż początkowo źle oszacowano wielkość gwiazdy, wokół krąży planeta. Została ona mocno niedoszacowana, podobnie jak sama planeta. Gdy przeanalizowano uzyskane dane stwierdzono, że nie mają one sensu i mamy tu do czynienia z wynikiem fałszywie dodatnim. Na szczęście doktorantka Ashley Chontos z University of Hawaii postanowiła powtórnie przeanalizować archiwalne dane Keplera. Nasze nowe analizy, podczas których wykorzystaliśmy fale akustyczne emitowane przez gwiazdy wykazały, że ta gwiazda jest trzykrotnie większa niż wcześniej przypuszczano. To zaś oznacza, że i planeta jest trzykrotnie większa. Kepler-1658b należy do klasy gorących Jowiszów, mówi Chontos. Już same wyliczenia wskazywały, że mamy do czynienia z planetą, jednak do potwierdzenia konieczne były dalsze obserwacje. Skontaktowaliśmy się z Dave'em Lathamem, astronomem ze Smithsonian Astrophysical Observatory, a on wraz z zespołem przeprowadził obserwacje, które jednoznacznie potwierdziły, że Kepler-1658b to planeta, mówi Dan Huber, astronom z University of Hawaii. Gwiazda Kepler-1658 jest o 50% bardziej masywna i trzykrotnie większa od Słońca. Kepler-1658b krąży w odległości zaledwie dwukrotnie większej niż średnica samej gwiazdy, co czyni ją jedną z planet krążących po najciaśniejszej orbicie. Widziana z powierzchni planety jej gwiazda wydaje się 60-krotnie większa niż Słońce widziane z powierzchni Ziemi. Kepler-1658 świetnie pokazuje, dlaczego lepsze rozumienie gwiazd jest istotne dla zrozumienia planet. Pokazuje też, jak wiele skarbów możemy znaleźć w danych zebranych przez Keplera, mówi Chotos. « powrót do artykułu
  22. Po raz pierwszy znaleziono egzoplanetę, która przetrwała kolizję z inną planetą. A dowodem na prawdziwość badań, opublikowanych na łamach Nature Astronomy, ma być istnienie dwóch podobnych egzoplanet. Mowa tutaj o planetach w układzie Kepler-107. Znajduje się on w odległości 1700 lat świetlnych w Gwiazdozbiorze Łabędzia. Wspomniane planety to Kepler-107b i Kepler-107c. Mają one niemal identyczne rozmiary, średnica obu jest około 1,5 raza większa od średnicy Ziemi. A mimo to jednak z planet jest 3-krotnie bardziej masywna od drugiej. Położona bliżej gwiazdy macierzystej Kepler-107b ma masę około 3,5 mas Ziemi, tymczasem masa Kepler-107c to aż 9,4 mas Ziemi. To zaś oznacza, że Kepler-107b ma gęstość podobną do gęstości Ziemi czyli około 5,3 grama na centymetr sześcienny, natomiast gęstość Kepler-107c to aż 12,6 g/cm3. Tak gigantyczna różnica w gęstości stanowiła poważną zagadkę. Jak bowiem dwie planety o takiej samej wielkości i w niemal tej samej odległości od gwiazdy macierzystej mogą mieć tak różny skład prowadzący do tak różnej gęstości. Najpierw naukowcy zaczęli rozważać, to co wiedzieli na pewno. Już wcześniejsze badania wykazały, że intensywne promieniowanie z gwiazdy macierzystej może pozbawić pobliską planetę atmosfery. Jeśli jednak Kepler-107b straciłaby atmosferę to, uwzględniają fakt, że obie planety są takiej samej wielkości, to ona byłaby gęstsza. A tymczasem jest na odwrót. Istnieje jeszcze jeden sposób, w jaki planeta może stracić masę – zderzenie z inną planetą. I to właśnie, jak sądzą astronomowie, spotkało Kepler-107c. Specjaliści uważają, że w przeszłości w Kepler-107c uderzyła jakaś inna planeta. Wskutek zderzenia 107c straciła skorupę i płaszcz. Pozostało z niej tylko bardzo gęste jądro wielkości Kepler-107b. Z badań wynika, że przy tej gęstości Kepler-107c powinna w 70% składać się z żelaza. Jako, że masa i średnica Kepler-107c zgadza się tym, czego można było się spodziewać po wynikach zderzenia dwóch wielkich planet, naukowcy sądzą, że ich obliczenia i hipoteza są prawdziwe. Wciąż jednak pracują nad zdobyciem dowodów. Jeśli się to uda, będziemy mieli dowody na pierwszą znaną nam kolizję planet pozasłonecznych. « powrót do artykułu
  23. Prestiżowy The Lancet publikuje wyniki badań, z których dowiadujemy się, że konieczna jest radykalna zmiana diety i sposobu produkcji żywności, jeśli chcemy uniknąć milionów zgonów i katastrofalnego zniszczenia planety. Zmiana musi być naprawdę znacząca. Zdaniem ponad 30 badaczy ludzkość powinna zjadać o połowę mniej cukru i czerwonego mięsa i dwukrotnie więcej warzyw, owoców oraz orzechów. Stoimy w obliczu katastrofy, mówi profesor Tim Lang, który stoi na czele EAT-Lancet Commision, która jest autorem badań. Obecnie około miliarda osób na świecie cierpi głód, a dwa miliardy jedzą zbyt dużo niezdrowej żywności, powodując epidemię otyłości, cukrzycy i chorób serca. Z powodu niezdrowej diety na całym świecie rocznie przedwcześnie umiera nawet 11 milinów osób. Jednocześnie przemysł spożywczy jest największym emitentem gazów cieplarnianych, głównym powodem utraty bioróżnorodności oraz główną przyczyną śmiercionośnych zakwitów alg u wybrzeży morskich i na wodach śródlądowych. Rolnictwo, które przekształciło niemal połowę powierzchni lądów, zużywa też do 70% globalnych wody pitnej. Jeśli mamy mieć jakiekolwiek szanse, by w 2050 roku wyżywić 10 miliardów ludzi musimy przestawić się na zdrową dietę, zmniejszyć ilość marnowanej żywności oraz zainwestować w technologie, które zmniejszą wpływ rolnictwa na środowisko, mówi Johan Rockstrom, dyrektor Poczdamskiego Instytutu Badań nad Wpływem Zmian Klimatu. To jest do zrobienia, ale wymaga rewolucji w rolnictwie, dodaje. Podstawą do osiągnięcia pożądanego stanu rzeczy jest spowodowanie, by przeciętny człowiek zjadał około 2500 kalorii dziennie.Nie chodzi o to, żeby wszyscy jedli tak samo. Ale patrząc na to szerzej, i dotyczy to przede wszystkim mieszkańców bogatych krajów, oznacza to zmniejszenie spożycia mięsa i nabiału, a znaczące zwiększenie konsumpcji roślin, dodaje Rockstrom. Naukowcy określili, że taka idealna dla świata dieta składa się z od 7 do nie więcej niż 14 gramów czerwonego mięsa na dobę. Tymczasem typowy hamburger zawiera 125-150 gramów mięsa. To pokazuje, jak olbrzymie zmiany musiałyby zajść w krajach najbogatszych oraz w tych szybko się bogacących, jak Chiny czy Brazylia. Głównym „rolniczym” winowajcą dewastacji planety jest wołowina. Jeśli chodzi o zmiany klimatyczne, to węgiel jest tym, co najgorsze, najbrudniejszym z paliw kopalnych. W rolnictwie takim odpowiednikiem węgla jest wołowina, wyjaśnia Rockstrom. Krowy wydzielają duże ilości metanu, a na potrzeby pastwisk wycinane są olbrzymie połacie lasów. Jakby jeszcze tego było mało, na potrzeby bydła przeznacza się olbrzymie ilości wody pitnej, wyprodukowanie kilograma wołowiny wymaga zużycia co najmniej 5 kilogramów ziarna, a konsumenci wyrzucają do śmieci około 30% mięsa. Jeśli chodzi o spożycie nabiału, to nie powinno ono przekraczać około 250 gramów mleka dziennie. Idealna dla planety dieta zakłada też jedzenie nie więcej niż 2 jajek w tygodniu. Jednocześnie zaś ludzie musieliby jest dwukrotnie więcej roślin, owoców i orzechów. Obecna dieta nie jest w stanie wyżywić ludzkości. Po raz pierwszy od 200 000 lat nasza dieta w sposób znaczący rozmija się z możliwościami planety i przyrody, mówi wydawca The Lancet, Richard Horton. Idealna dla zdrowia i planety dieta powinna zawierać 300 gramów warzyw, 200 gramów owoców, 50 gramów warzyw bogatych w błonnik (np. ziemniaki), 40 gramów tłuszczów nienasyconych, 31 gramów sztucznie dodanego cukru, 25 gramów orzeszków ziemnych, 25 gramów soi, 25 gramów orzechów z drzew (włoskie, migdały), 14 gramów czerwonego mięsa, 5 gramów smalcu lub łoju, 13 gramów jajek (ok 1,5 jajka na tydzień), 29 gramów drobiu, 28 gramów ryb i owoców morza, 50 gramów fasoli i podobnych produktów, 232 gramy ziaren (ryż, kukurydza, pszenica) i 250 mleka i produktów mlecznych. « powrót do artykułu
  24. Zdaniem międzynarodowego zespołu naukowego, wszechświat jest pełen planet zawierających wodę. Uczeni uważają, że jest ona ważnym składnikiem egzoplanet o rozmiarach od 2 do 4 wielkości Ziemi. To była dla nas wielka niespodzianka, gdy zdaliśmy sobie sprawę, że musi być tak dużo wodnych światów, mówi główny autor badań, doktor Li Zen z Uniwersytetu Harvarda. Z badań, przeprowadzonych za pomocą teleskopów Keplera i Gaia wynika bowiem, że wiele ze znanych nam egzoplanet zawiera do 50% wody. Dla porównania, na Ziemi woda stanowi zaledwie 0,02% masy planety. Wiele z potwierdzonych dotychczas około 4000 egzoplanet można zaliczyć do jednej z dwóch kategorii: takich, których średnica wynosi około 1,5 średnicy Ziemi oraz takich o średnicy około 2,5 średnicy naszej planety. Po przeanalizowaniu średnic i mas badanych egzoplanet uczeni stworzyli model ich budowy. Sprawdziliśmy, jak masa ma się do średnicy i stworzyliśmy model wyjaśniający tę zależność, mówi Li Zeng. Wynika z niego, ze planety o średnicy do 1,5 średnicy Ziemi to zwykle światy skaliste o masie 5-krotnie większej niż masa naszej planety. Z kolei te o średnicy 2,5-krotnie większej od średnicy Ziemi mają masę 10-krotnie większą od naszej planety i są światami wodnymi. Tam występuje woda, ale nie jest ona tak powszechnie dostępna jak na Ziemi. Temperatury powierzchni tych planet wynoszą 200–500 stopni Celsjusza, są otoczone atmosferą zdominowaną przez parę wodną z płynną warstwą poniżej. W głębi planety woda ta, pod wpływem wysokiego ciśnienia, została prawdopodobnie zmieniona w lód. Jeszcze niżej jest skaliste jądro planety. Piękno naszego modelu polega na tym, że wyjaśnia nam, jak skład planety ma się do znanych nam danych na jej temat, mówi Li Zeng. Nasze dane wskazują, że około 35% egzoplanet większych od Ziemi powinno być bogate w wodę. Te wodne światy formowały się w podobny sposób, jak jądra dużych planet Układu Słonecznego. Niedawno rozpoczęta misja TESS pozwoli na znalezienie większej ich liczby, a w przyszłości teleskop Jamesa Webba pozwoli na zbadanie ich atmosfery. To ekscytujący okres dla badaczy egzoplanet, stwierdza uczony. « powrót do artykułu
  25. Astronomowie z Instytutu Astronomii im. Maxa Plancka w Heidelbergu zobrazowali planetę tworzącą się wokół młodego karła PDS 70. Dzięki instrumentowi SPHERE znajdującemu się na Very Large Telescope (VLT) udało się odkryć pierwszą tak młodą planetę. Została ona nazwana PDS 70b. Na wykonanych obrazach widać, jak tworzący się obiekt wędruje przez dysk protoplanetarny otaczający gwiazdę. Planeta znajduje się w odległości 3 miliardów kilometrów od swojej gwiazdy. To mniej więcej tyle, ile wynosi odległość Urana od Słońca. PDS 70b to gazowy olbrzymi, o masie kilkukrotnie mniejszej niż masa Jowisza. Temperatura na jej powierzchni sięga 1000 stopni Celsjusza. Dyski protoplanetarne wokół gwiazd to miejsca narodzin planet. Dotychczas znaleźliśmy jedynie kilka takich dysków z cechami wskazującymi, że istnieją tam planety. Problem w tym, że jak do tej pory o obecności planet świadczyły cechy charakterystyczne dysku, mówi Miriam Keppler, która stała na czele zespołu badawczego. Naukowcom z Niemiec udało się natomiast zobrazować samą tworzącą się planetę. Dysk protoplanetarny wokół PDS 70 znany jest od kilku dekad. Od dawna było też wiadomo, że w dysku istnieją przerwy, które – jak sądzono – powstały wskutek interakcji dysku z planetą. Teraz po raz pierwszy udało się tę planetę zobaczyć. « powrót do artykułu
×
×
  • Dodaj nową pozycję...