Znajdź zawartość
Wyświetlanie wyników dla tagów ' nowotwór wątroby' .
Znaleziono 2 wyniki
-
Rozległe anatomiczne resekcje wątroby wykonywane laparoskopowo mogą stać się standardem postępowania w chirurgii nowotworów wątroby – uważają specjaliści Katedry i Kliniki Chirurgii Ogólnej, Transplantacyjnej i Wątroby Centralnego Szpitala Klinicznego Uniwersyteckiego Centrum Klinicznego WUM, którzy zdecydowali się 8 marca 2021 roku wykorzystać nigdy wcześniej nie stosowaną w Polsce laparoskopową operację usunięcia prawych segmentów marskiej wątroby u pacjenta z rzadkim agresywnym nowotworem tego narządu. Marskość wątroby stanowi nieodwracalne uszkodzenie tego narządu oraz może prowadzić do powstania nowotworów wątroby, w tym nowotworów o typie raka wątrobowokomórkowego, których jest zdecydowana większość, a także agresywnych postaci łączących cechy raka wątrobowokomórkowego i raka dróg żółciowych. Taka sytuacja znacznie ogranicza możliwości leczenia, sprawiając, że usunięcie fragmentu narządu staje się zabiegiem szczególnie skomplikowanym. Marskość wątroby, nawet na etapie zachowanej funkcji narządu, jest związana ze znacznym ograniczeniem rezerwy czynnościowej i możliwości regeneracyjnych. Towarzyszące marskości nadciśnienie wrotne i zaburzenia krzepnięcia zwiększają ryzyko krwawień, zarówno śród- jak i pooperacyjnych – mówi prof. Michał Grąt z Kliniki Chirurgii Ogólnej, Transplantacyjnej i Wątroby CSK UCK WUM, który wraz z współpracownikami podjął się wykonania zabiegu, dodając jednocześnie, że pomimo niebezpieczeństw związanych z tego typu nowotworem usunięcie fragmentu wątroby z guzem oraz transplantacja wątroby stanowią jedyne potencjalnie radykalne metody leczenia. Pacjent, którego zdecydowano się poddać tej pionierskiej w Polsce metodzie leczenia, zwanej laparoskopową operacją prawostronnej hemihepatektomii, borykał się z rzadkim agresywnym nowotworem wątroby o cechach raka wątrobowokomórkowego i raka dróg żółciowych (combined hepatocellular/cholangiocellular carcinoma) z masami nowotworowymi wypełniającymi prawą gałąź żyły wrotnej i jej odgałęzienia. W przypadku naszego pacjenta przeszczepienie wątroby było niemożliwe ze względu na szereg przeciwskazań, takich jak: typ histologiczny nowotworu (komponenta raka dróg żółciowych), obecność mas nowotworowych w układzie wrotnym oraz bardzo wysokie stężenie alfafetoproteiny w surowicy. Z uwagi na znacznie zwiększone ryzyko powikłań pooperacyjnych dla rozległych resekcji wątroby wykonywanych w marskości, zastosowanie dostępu małoinwazyjnego stało się niezwykle korzystne dla zminimalizowania ryzyka – wyjaśnił prof. Michał Grąt. Przebieg pooperacyjny był niepowikłany, chory szybko powrócił do przedoperacyjnego poziomu sprawności i opuścił Klinikę w 8. dobie po operacji. Prawostronne hemihepatektomie, czyli anatomiczne resekcje prawych segmentów wątroby, należą do najbardziej rozległych i najtrudniejszych technicznie laparoskopowych operacji z zakresu chirurgii wątroby i są obarczone najwyższym ryzykiem powikłań, szczególnie krwawień i pooperacyjnej niewydolności wątroby. W przypadku chorych z marskością wątroby, operacje te wykonywane są jedynie w nielicznych i najbardziej wyspecjalizowanych ośrodkach zajmujących się chirurgią wątroby i dróg żółciowych na świecie. Laparoskopia zmniejsza uraz operacyjny, a także krwawienie śródoperacyjne i ból, poprawia proces rehabilitacji po operacji, oraz prowadzi do szybszego powrotu czynności przewodu pokarmowego. Ze względu na duży stopień trudności laparoskopowych resekcji wątroby głównym czynnikiem ograniczającym zastosowanie tego dostępu są umiejętności i doświadczenie zespołu chirurgicznego oraz anestezjologicznego. Rozwój programu laparoskopowych dużych anatomicznych resekcji wątroby w naszej Klinice powoduje, że zastosowanie tej metody leczenia staje się dostępne dla większości chorych z resekcyjnymi nowotworami wątroby – uważa prof. Michał Grąt. Zabieg wykonał zespół w składzie: prof. Michał Grąt (operator), dr Maciej Krasnodębski, dr Marcin Morawski, dr Konrad Kobryń oraz dr Marta Dec (anestezjolog). Rozwojem programu rozległych laparoskopowych resekcji wątroby zainteresowałem się przed 2 laty podczas stażu w Klinice Chirurgicznej w Heidelbergu. Zespół pod kierownictwem prof. Buchlera wykonywał tam różnorodne laparoskopowe i robotowe operacje onkologiczne w obrębie jamy brzusznej. Po pierwszych przygotowaniach, polegających na wykonywaniu mniej rozległych resekcji wątroby metodą laparoskopową, prof. Krzysztof Zieniewicz zaakceptował rozpoczęcie programu rozległych resekcji anatomicznych. Wsparcie Pana Profesora umożliwiło nam przezwyciężenie szeregu trudności naturalnie występujących przy wprowadzaniu trudnych i ryzykownych operacji – mówi prof. Michał Grąt. Od września 2020 r. do chwili obecnej prof. Michał Grąt i współpracownicy wykonali w Klinice Chirurgii Ogólnej, Transplantacyjnej i Wątroby CSK UCK WUM, kierowanej przez prof. Krzysztofa Zieniewicza, kilkanaście laparoskopowych rozległych anatomicznych resekcji wątroby z powodu pierwotnych i wtórnych nowotworów tego narządu. « powrót do artykułu
-
- wątroba
- nowotwór wątroby
-
(i 1 więcej)
Oznaczone tagami:
-
Mikrosfery za Świerka pomagają chorym na raka wątroby
KopalniaWiedzy.pl dodał temat w dziale Medycyna
Reaktor MARIA jest jednym z głównych ośrodków napromieniania mikrosfer zawierających radioaktywny holm, które są stosowane w terapii nowotworów wątroby. Technologia opracowana w NCBJ na zlecenie firmy Quirem Medical – globalnego producenta mikrosfer teraperutycznych QuiremSpheres – służy pacjentom w kilkunastu wyspecjalizowanych klinikach w Europie. Mikrosfery o średnicy ok. 30 mikrometrów wykonane z polilaktydu holmu (polimeru kwasu mlekowego) służą do miejscowej radioterapii, głównie w przypadku nowotworów wątroby. Na etapie produkcji umieszcza się w nich stabilny izotop holm-165, który poprzez bombardowanie neutronami można przekształcić w radioaktywny izotop holm-166. Holm-166 ma bardzo przydatne właściwości. Jego czas życia jest stosunkowo krótki (ok. 27 godzin). Rozpadając się, emituje promieniowanie beta o energii ok. 2 MeV, którego zasięg w tkankach wynosi kilka milimetrów. Radioaktywny holm, uwięziony w mikrosferach, podaje się głównie pacjentom z zaawansowanymi nowotworami wątroby, wstrzykując zawiesinę z mikrogranulkami do odpowiednich naczyń krwionośnych prowadzących je do miejsca lokalizacji nowotworu. Promieniowanie beta, działając na dobrze zlokalizowanym obszarze, niszczy komórki rakowe, pozostawiając nietkniętą większość zdrowej części narządu. Procedura ta nazywana jest radioembiolizacją. Stosuje się ją w przypadku nowotworów nieoperacyjnych i niewrażliwych na chemioterapię. Holm ma dwie dodatkowe zalety: emituje także promieniowanie gamma, co pozwala precyzyjnie zlokalizować miejsca i ilości wprowadzonej do organizmu substancji radioaktywnej. Jest też paramagnetykiem, co stwarza dodatkowe możliwości m.in. śledzenia podanego specyfiku w organizmie. Jedyne stosowane obecnie w terapii mikrosfery zawierające holm są wytwarzane i dystrybuowane przez niderlandzką firmę Quirem Medical B.V. jako QuiremSpheres®. W 2017 r. zespół naukowców pracujących w reaktorze MARIA we współpracy z firmą Quirem Medical przystąpił do opracowania technologii napromienia mikrosfer holmowych. Zadanie wymagało dostosowania infrastruktury reaktora, a także wypracowania nowych rozwiązań technologicznych oraz procedur i nowej metodologii napromieniania materiałów tarczowych – opowiada dr inż. Rafał Prokopowicz, Kierownik Zakładu Badań Reaktorowych. Powodem tego jest fakt, że każda fiolka z mikrosferami zawiera naważkę przygotowaną do terapii konkretnego pacjenta i należy ją napromienić w taki sposób, aby w wyznaczonych dniu i godzinie terapii miała odpowiednią aktywność, ustaloną dla danego pacjenta” Każdy materiał podczas napromieniania podgrzewa się od promieniowania. Mikrosfery z poliaktydu są bardzo wrażliwe – ich degradacja może rozpocząć się już po osiągnięciu 60° C. Tymczasem muszą one zachować swój kształt podczas napromieniania, aby mogły swobodnie dostać się do leczonego miejsca po podaniu pacjentowi. „W celu poprawy warunków napromieniania mikrosfer, udoskonaliliśmy układ chłodzenia umieszczanych w reaktorze zasobników z mikrosferami” – wyjaśnia naukowiec. Konieczne było także umieszczenie w rdzeniu reaktora, tuż obok miejsca napromieniania, specjalnych detektorów promieniowania monitorujących cały czas warunki napromieniania. Stworzyliśmy specjalny algorytm i oparty na nim program komputerowy, który na podstawie sygnałów z detektorów ułatwia bardzo precyzyjne wyznaczanie czasu napromieniania poszczególnych zasobników z mikrosferami, tak aby uzyskały one aktywność wymaganą w czasie terapii. Jest to kluczowe narzędzie, niezbędne do prawidłowego napromieniania mikrosfer, ponieważ gęstość strumienia neutronów w reaktorze fluktuuje przez cały czas jego pracy. Naukowcy NCBJ we współpracy z Quirem opracowali także specjalne fiolki do napromieniania mikrosfer. Od nazwy reaktora zostały one nazwane fiolkami typu MARIA. Tajemnicą tych fiolek jest specjalne wyprofilowanie dna, które powoduje, że umieszczony w pojemniku materiał układa się w cienką, stosunkowo dobrze chłodzoną warstwę. Pojemniki plastikowe umieszcza się w zasobnikach metalowych, wprowadzanych później do kanałów pionowych reaktora – wyjaśnia inż. Łukasz Murawski, Kierownik Działu Technologii Napromieniań. Aby zapewnić jeszcze lepsze chłodzenie, we wnętrzu zasobnika powietrze zastępuje się helem. Tak przygotowane zasobniki wędrują pocztą hydrauliczną do miejsca napromieniania, a po odpowiednim czasie napromieniania w ten sam sposób są transportowane do komór gorących, gdzie przepakowywane są do pojemników transportowych. Dalej specjalna firma transportowa przewozi je ekspresowo do szpitala, gdzie czeka już pacjent. Najczęściej są to szpitale niemieckie i niderlandzkie. Czas gra tu wielką rolę, gdyż po upływie jednego dnia aktywność preparatu spada już o połowę. Ponieważ zapotrzebowania na realizację terapii pojawiają się z niewielkim wyprzedzeniem, zespół reaktora niemal przez całą dobę, 7 dni w tygodniu musi być gotowy do błyskawicznego przygotowania i przeprowadzenia napromieniania oraz ekspedycji mikrosfer. Wymaga to zaangażowania i ciągłej gotowości wielu specjalistów. Obecnie w reaktorze MARIA napromienia się fiolki z mikrosferami na potrzeby ponad 100 pacjentów rocznie. Są one wykorzystywane w kilkunastu klinikach rozsianych po całej Europie, m.in. w Roterdamie, Nijmegen, Utrechcie, Dreźnie, Magdeburgu, Jenie, Bazylei, Rzymie, Pizie, Barcelonie, Madrycie, Porto i innych. Od ponad trzech lat reaktor MARIA jest jednym z niewielu, a jednocześnie jednym z głównych miejsc napromieniowywania mikrosfer dla firmy Quirem. W związku z rosnącym zapotrzebowaniem na terapie radioembolizacji z zastosowaniem Ho-166, współpraca ta będzie kontynuowana i rozwijana – zapewnia dr inż. Michał Gryziński, dyrektor Departamentu Eksploatacji Obiektów Jądrowych NCBJ. Mamy nadzieję na wybudowanie przy reaktorze MARIA laboratorium, które pozwoli NCBJ stać się centrum dystrybucji mikrosfer QuiremSpheres w Europie Wschodniej oraz w Polsce, gdzie na razie ta forma terapii nie jest jeszcze dostępna. « powrót do artykułu-
- holm
- nowotwór wątroby
-
(i 4 więcej)
Oznaczone tagami: