Znajdź zawartość
Wyświetlanie wyników dla tagów ' monitor' .
Znaleziono 4 wyniki
-
Na Uniwersytecie Kalifornijskim w San Diego (UCSD) powstał specjalny plaster, który w czasie rzeczywistym monitoruje przepływ krwi w głęboko położonych tkankach. Posłuży on do wczesnego wykrywania problemów z układem krążenia. Podobne plastry są wykorzystywane do monitorowania parametrów skóry czy struktur położonych tuż pod nią. Tymczasem urządzenie z UCSD jest w stanie odbierać sygnały z mikrometrowej wielkości struktur położonych nawet 14 centymetrów pod skórą. Takie urządzenie może dostarczyć bardziej spójnego, dokładnego obrazu tego, co dzieje się w głęboko położonych tkankach i organach takich jak serce czy mózg, mówi główny autor badań profesor nanoinżynierii Sheng Xu. Plaster składa się z macierzy 144 milimetrowej wielkości przetworników ultradźwiękowych umieszczonych na cienkim polimerowym podłożu. Ułożono je w macierz o wymiarach 12x12. Ich sygnał może penetrować tkanki na głębokość do 14 centymetrów. Stało się to możliwe dzięki temu, że każdy z przetworników można kontrolować indywidualnie. Mogą one działać albo w synchronicznie, emitując skupioną wiązkę ultradźwięków o wysokiej intensywności, albo też asynchronicznie, gdy każdy z przetworników bada interesującą nas strukturę pod nieco innym kątem. O ile konwencjonalne urządzenia tego typu trzeba przesuwać, by uzyskać inny kąt, w przypadku urządzenia z San Diego nie ma takiej potrzeby. Pracuje ono w zakresie od -20 do 20 stopni. Dzięki temu można monitorować znacznie większy obszar niż ten znajdujący się bezpośrednio pod plastrem. Możemy manipulować wiązką ultradźwięków. To daje nam wiele możliwości, możemy monitorować różne organy czy przepływ krwi w dużej rozdzielczości. Nie byłoby to możliwe za pomocą pojedynczego przetwornika, mówi doktorantka Muyang Lin. Plaster można nosić przez dłuższy czas. Dzięki temu może on dostarczyć cennych danych, w tym informacji o nieodpowiednim funkcjonowaniu zastawek, złej cyrkulacji krwi czy skrzeplinach. W prototypowym urządzeniu dane odczytywano podłączając doń przekaźnik. Teraz, gdy okazało się, że plaster działa jak należy, jego twórcy pracują nad zaimplementowaniem na nim modułu bezprzewodowego przesyłania danych. « powrót do artykułu
-
- plaster
- ultradźwięki
-
(i 3 więcej)
Oznaczone tagami:
-
Naukowcy z MIT stworzyli włókno zawierające układy pamięci, czujniki temperatury i korzystające z oprogramowania trenowanego na sieciach neuronowych, które będzie mogło śledzić naszą aktywność fizyczną. Po wszyciu w ubranie włókno takie będzie odbierało, przechowywało i analizowało dane dotyczące tego, co robimy. Profesor Yoel Fink, główny badacz w Research Laboratory of Electronic i jeden z twórców włókna mówi, że dzięki niemu można będzie śledzić nieznane dotychczas wzorce działania organizmu, co może przydać się zarówno sportowcom monitorującym swoje postępy, badaczom chcącym śledzić wpływ interwencji medycznych na organizm, jak i lekarzom pragnącym wcześnie wykrywać oznaki chorób. Z czasem możliwości takiego włókna mogą się zwiększać. Być może kiedyś pozwoli ono np. na uchwycenie ważnych momentów w życiu, rejestrując np. piosenkę graną podczas ślubu. Dotychczas włókna elektroniczne były włóknami analogowymi, przetwarzającymi ciągły sygnał elektryczny. Tutaj zaś mamy włókno cyfrowe. To pierwsze włókno przechowujące i przetwarzające dane cyfrowe. Pozwala na poszerzenie właściwości tekstyliów i ich programowanie, mówi Fink. Nowe włókno powstało z setek krzemowych mikroukładów, które umieszczono w formie i wykorzystano stworzenie polimerowego włókna. Dzięki precyzyjnej kontroli przepływu polimeru, naukowcy byli w stanie stworzyć włókno długości dziesiątków metrów, które zapewnia nieprzerwane połączenie elektroniczne pomiędzy umieszczonymi nań mikroukladami. Włókno jest cienkie, elastyczne, przechodzi przez ucho igły, może być wszywane w tradycyjne materiały i wytrzymuje co najmniej 10 cykli prania. Jeśli zostanie umieszczone w koszuli, nie będziesz czuł jego obecności. Nie będziesz nawet wiedział, że tam jest, mówi doktorant Garbiel Loke, członek zespołu badawczego. Nowe włókno ma bardzo szerokie możliwości. Pozwala na przykład kontrolować poszczególne elementy. Możemy opisać włókno jako korytarz, a mikroukłady jak pokoje, z których każdy ma unikatowy identyfikator, mówi Loke. Naukowcy opracowali metodę adresowania, która pozwala na włączanie wybranych układów, bez jednoczesnego włączania innych. Włókno dysponuje też sporą ilością pamięci. Naukowcy byli w stanie zapisać, przechować i odtworzyć kilkuset kilobajtowe pliki filmowe czy muzyczne. Można je było przechowywać w włóknie przez w miesiące bez potrzeby zasilania samego włókna. Naukowcy przeprowadzili też eksperyment, w ramach którego stworzyli ze swojego włókna układ pamięci składający się z sieci 1650 połączeń. Wszyli to następnie w rękaw t-shirta, co pozwoliło na zarejestrowanie 270 minut danych nt. temperatury ciała osoby noszącej koszulkę i przeanalizowanie, jak temperatura ta miała się do różnej aktywności osoby. Następnie na podstawie takich danych wytrenowali swoje włókno na sieci neuronowej, dzięki czemu z 96-procentową dokładnością było ono w stanie określić aktywność fizyczną, jakiej w danym momencie oddawała się badana osoba. W przyszłości takie włókna mogą na bieżąco monitorować osoby starsze lub chore, alarmując w razie wykrycia niepokojących zmian, jak zaburzenia oddychania czy nieprawidłowy rytm serca. Obecnie włókno kontrolowane jest przez niewielkie zewnętrzne urządzenie, więc jego twórcy chcą teraz skupić się nad stworzeniem mikrokontrolera, który będzie można wszyć w samo włókno. « powrót do artykułu
- 2 odpowiedzi
-
- włókno cyfrowe
- monitor
-
(i 4 więcej)
Oznaczone tagami:
-
Pewnego dnia będziemy mogli monitorować stan swojego zdrowia używając do tego celu... ołówka i rysując nim urządzenie bioelektroniczne. Tak przynajmniej obiecują naukowcy z University of Missouri, którzy dowiedli, że ołówek i kawałek papieru to wszystko, czego potrzeba, by stworzyć urządzenie do monitorowania stanu zdrowia. Profesor Zheng Yan zauważa, że wiele komercyjnych urządzeń biomedycznych umieszczanych na skórze składa się z dwóch podstawowych elementów: modułu biomedycznego oraz stanowiącego podłoże elastycznego materiału, który zapewnia mocowanie do skóry i kontakt z nią. Standardowy sposób produkcji takich urządzeń jest złożony i kosztowny. W przeciwieństwie do tego nasza technika jest tania i bardzo prosta. Możemy stworzyć takie urządzenie za pomocą papieru i ołówka, mówi Yan. Warto pamiętać, że wkład ołówków stanowi głównie grafit. Naukowcy zauważyli, że ołówki zawierające ponad 90% grafitu są w stanie przewodzić duże ilości energii, jaka powstaje w wyniku tarcia rysika o papier. Szczegółowe badania wykazały, że do stworzenia na papierze różnych urządzeń biomedycznych najlepsze są ołówki, w których rysiku jest 93% grafitu. Yan zauważył też, że pomocny może być biokompatybilny klej w spraju, który można nałożyć na papier, by lepiej przylegał do skóry. Naukowcy mówią, że ich odkrycie może mieć olbrzymie znaczenie dla rozwoju taniej, domowej diagnostyki medycznej, edukacji czy badań naukowych. Na przykład jeśli ktoś ma problemy ze snem, jesteśmy w stanie narysować biomedyczne urządzenie, które pomoże monitorować sen tej osoby, stwierdza Yan. Dodatkową zaletą takich urządzeń jest fakt, że papier bardzo szybko ulega biodegradacji, więc produkcja tego typu czujników nie będzie wiązała się z wytwarzaniem zalegających odpadów. Autorzy badań twierdzą, że w ten sposób można będzie tworzyć czujniki temperatury, czynności elektrycznej mięśni i nerwów obwodowych, pracy układu krążenia, czujniki oddechu, urządzenia monitorujące pH potu, zawartość w nim glukozy czy kwasu moczowego i wiele innych urządzeń. Jakość przekazywanych przez nie sygnałów jest porównywalna z komercyjnie dostępnymi czujnikami. Całość zaś zasilana będzie dzięki wilgoci obecnej w powietrzu. Jak zauważyli naukowcy, pojedyncze narysowane ołówkiem urządzenie o powierzchni 0,87 cm2 może dzięki wilgotności powietrza generować przez 2 godziny napięcie sięgające 480 mV. Opisujący badania Yana artykuł Pencil-paper on-skin electronics został opublikowany w PNAS. Badania były finansowane przez amerykańską Narodową Fundację Nauki, Narodowe Instytuty Zdrowia oraz Biuro Badań Naukowych Sił Powietrznych. « powrót do artykułu
-
LG zaprezentowało pierwsze monitory ciekłokrystaliczne Nano IPS, których czas reakcji wynosi 1 milisekundę. W przyszłym miesiącu firma rozpocznie sprzedaż dwóch modeli nowatorskich urządzeń. Monitor 27GL850 to 27-calowy wyświetlacz o rozdzielczości 2560x1440, jasności 350 nitów i częstotliwości odświeżania 144Hz. Urządzenie obsługujące HDR10 i posiadające status NVIDIA G-SYNC Compatible zostało wyposażone w dwa porty HDM, jeden DisplayPort oraz w USB 3.0. Drugi z monitorów oznaczono symbolem 38GL950G. Przekątna wyświetlacza wynosi w tym przypadku 37,5 cala, jego rozdzielczość to 3840x1600, a jasność wynosi 450 nitów. Częstotliwość odświeżania zaś podniesiono do 175 Hz. Wyższy model wyposażono w VESA DisplayHDR 400, obsługuje ono też technologię NVIDIA G-SYNC. Jego zastaw portów to 1xHDMI, 1xDisplayPort, hub USB 3.0 oraz Sphere Lighting 2.0. Monitory powstały przede wszystkim z myślą o graczach. Mieszkańcy USA będą mogli składać zamówienia na niższy model już 1 lipca. Na głównych rynkach europejskich nowe urządzenia zagoszczą w trzecim kwartale bieżącego roku. « powrót do artykułu