Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów ' mikrofalowe promieniowanie tła' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 2 wyniki

  1. Teoria pętlowej grawitacji kwantowej (LQG) pozwala wyjaśnić pewne anomalie mikrofalowego promieniowania tła, z którymi nie poradziły sobie dotychczas inne teorie, twierdzi zespół naukowy pracujący pod kierunkiem Abhaya Ashtekara z Pennsylvania State University. Wyniki badań zostały opisane na łamach Physical Review Letters. Teoria grawitacji kwantowej opisuje historię wszechświata w kategorii „Wielkiego Odbicia”.  Bardziej znana teoria Wielkiego Wybuchu mówi, że wszechświat powstał z osobliwości, niezwykle małego punktu, z którego się rozszerzył. W teorii kwantowej grawitacji mamy zaś do czynienia ze stałą Plancka, najmniejszym możliwym rozmiarem. Zgodnie z nią wszechświat po okresie rozszerzania zacznie się kurczyć, a gdy osiągnie wielkość stałej Plancka, nastąpi odbicie i znowu zacznie się rozszerzać. Zatem wszechświat jest zjawiskiem cyklicznym. W teorii tej Wielki Wybuch jest albo pierwszym, albo kolejnym z serii Wielkich Odbić. Autorzy najnowszych badań skupili się na dwóch anomaliach mikrofalowego tła (CMB), zwanym też promieniowaniem reliktowym. To obecne w całym wszechświecie promieniowanie jest pozostałością po wczesnym etapie formowania się wszechświata. Jedna z tych anomalii ma związek z rozkładem energii CMB, w którym widoczne są niewielkie różnice temperatury. Druga anomalia ma związek z amplitudą soczewkowania CMB, czyli jego zagięcia podczas podróży w przestrzeni. Soczewkowanie to jest wynikiem rozkładu i gęstości materii, co z kolei jest związane z kwantowym fluktuacjami, do których dochodziło jeszcze przed rozszerzaniem się wszechświata. Jeśli teoria pętlowej grawitacji kwantowej jest prawdziwa, to Wielkie Odbicie powinno wpłynąć na CMB. Teoria ta stwierdza, że w momencie Wielkiego Odbicia zagięcie czasoprzestrzeni było większe niż kiedykolwiek później. Pętlowa grawitacja kwantowa przewiduje konkretną wartość zagięcia czasoprzestrzeni w momencie odbicia. Wartość ta jest podstawowym elementem tego, co obecnie obserwujemy. Innymi słowy, jeśli przewidywanie te są prawdziwe, to i obecnie powinniśmy obserwować pewne konkretne modyfikacje rozszerzającego się wszechświata, mówi Ashtekar. Olbrzymie zakrzywienie czasoprzestrzeni, jakie miało miejsce w momencie Wielkiego Odbicia, pozostawiło trwały ślad w mikrofalowym promieniowaniu tła. Długość fali fluktuacji  wywołanych tym zjawiskiem jest większa niż część wszechświata, jaką obserwujemy, więc nie jesteśmy w stanie wykryć jej bezpośrednio. Jednak jest ona skorelowana z falami o mniejszych długościach, które objawiają się w anomaliach CMB, których teoria Wielkiego Wybuchu nie potrafi wyjaśnić. Istnieje sześć podstawowych parametrów, które decydują o tym, co widzimy przyglądając się mikrofalowemu promieniowaniu tła. Dwa to pierwotne parametry związane z końcem okresu inflacji, a ich wartości wpływają na zakres mocy CMB. Dwa kolejne pochodzą z czasu pomiędzy końcem inflacji, gdy wszechświat liczył sobie 10-32 sekundy, a momentem, gdy około 379 000 lat później pojawiło się CMB. Dwa ostatnie parametry opisują to, co wydarzyło się pomiędzy pierwszą emisją CMB a dniem dzisiejszym. Chociaż teoria Wielkiego Wybuchu jest w stanie określić wartości tych parametrów, to LQC wprowadza do nich modyfikacje, które wyjaśniają obserwowane anomalie. W mikrofalowym promieniowaniu tła istnieje też trzecia anomalia, hemisferyczna. Otóż obie hemisfery CMB mają różną średnią energię. Tę anomalię wyjaśnił już Ivan Agullo z Louisiana State University, który również wykorzystał przy tym teorię pętlowej grawitacji kwantowej. Sam Agullo zapoznał się z pracą grupy Ashtekara i określił ją jako fantastyczną. Dowodzi ona, że fizyczne procesy, które miały miejsce w odległej przeszłości, przed epoką inflacji, mogą pozostawić ślady na współczesnym niebie, stwierdził. Ostatnią, wciąż niewyjaśnioną anomalią, jest różnica w pomiarach stałej Hubble'a. O problemie tym informowaliśmy już wcześniej. Ashtekar wskazuje jednak na pracę Alejandro Pereza z Aix-Marseille Universite, która jego zdaniem stanowi pierwszy krok ku wyjaśnieniu tej anomalii na gruncie LQC. « powrót do artykułu
  2. Pomiary potwierdzają, że mamy kryzys w kosmologii, stwierdził Geoff Chih-Fan Chen, kosmolog z University of California, Davis, podczas 235. spotkania Amerykańskiego Towarzystwa Astronomicznego. Kryzysowi temu na imię stała Hubble'a, jedna z podstawoywch stałych kosmologicznych, co do wartości której trwa ostry spór. Stała Hubble'a została po raz pierwszy obliczona przez Edwina Hubble'a, który zauważył, że galaktyki oddalają się od Ziemi w tempie proporcjonalnym do ich odległości od naszej planety. Problem w tym, że w ostatnich latach różne zespoły naukowe nie mogą się zgodzić, co do wartości stałej Hubble'a. Pomiary mikrofalowego promieniowania tła (CMB), które jest pozostałością po Wielkim Wybuchu, wskazują, że stała Hubble'a wynosi 64,4 km/s/Mpc (kilometrów na sekundę na megaparsek). Jednak pomiary wykonywane z użyciem cefeid, zmiennych gwiazd pulsujących, wskazują, że wartość ta to 73,4 km/s/Mpc. Grupa naukowców, której członkiem jest Chen, postanowiła wykonać pomiary metodą soczewkowania grawitacyjnego. Wykorzystali fakt, że masywne obiekty zaginają czasoprzestrzeń, a co za tym idzie, światło. Naukowcy wykorzystali więc Teleskop Hubble'a do przyjrzenia się światłu docierającemu do nas z sześciu kwazarów położonych w odległości od 3 do 6,5 miliarda lat świetlnych od Ziemi. Kwazary zaginają światło, a że same pulsują, to impulsy te docierają do nas o różnym czasie, w zależności od tego, jaką drogę przebywa światło. Różnice te można wykorzystać do obliczenia tempa rozszerzania się wszechświata. Z nowych obliczeń wynika, że stała Hubble'a wynosi 73,3 km/s/Mpc. To bardzo blisko wartości uzyskanej za pomocą badania cefeid, ale wciąż daleko od tego, co pokazują pomiary CMB. Chen przyznaje, że różnica w pomiarach prawdopodobnie nie wynika z błędów metodologicznych i przypomina, że jeszcze inna grupa badawcza, która wykorzystała w tym samym celu czerwone nadolbrzymy uzyskała wynik pośredni, wynoszący 69,8 km/s/Mpc. W związku z tym coraz więcej fizyków sugeruje, że musi istnieć jakiś błąd w obecnie obowiązujących modelach wszechświata. « powrót do artykułu
×
×
  • Dodaj nową pozycję...