Znajdź zawartość
Wyświetlanie wyników dla tagów ' koherencja' .
Znaleziono 4 wyniki
-
Komputery kwantowe mają rozwiązywać problemy, z którymi nie radzą sobie komputery klasyczne. Maszyny, które udało się zbudować, bazują zwykle na superpozycji stanów elektronicznych, na przykład na dwóch różnych ładunkach. Problem w tym, że kubity elektromagnetyczne szybko ulegają dekoherencji, tracą swój stan kwantowy. Wówczas superpozycja ulega zniszczeniu i nie mamy już do czynienia z kubitem. To obecnie znacząco ogranicza możliwości komputerów kwantowych. Wkrótce jednak może się to zmienić, gdyż naukowcy z Federalnego Instytutu Technologii w Zurychu stworzyli długo działający mechaniczny kubit. Szwajcarski kubit to miniaturowa wersja membrany instrumentu perkusyjnego. Zachowuje się ona w sposób podobny do kota Schrödingera – jednocześnie wibruje i nie wibruje. Jest więc w superpozycji. Wykorzystanie mechanicznego kubitu mogłoby doprowadzić do powstania mechanicznych komputerów kwantowych, zdolnych do przeprowadzania długotrwałych, złożonych obliczeń. Specjaliści, próbujący stworzyć mechaniczny kubit, mierzyli się z olbrzymim problemem związanym ze stanami energetycznymi. Standardowe kubity elektromagnetyczne zachowują się anharmonicznie, co oznacza, że pomiędzy ich stanami elektronicznymi istnienie nierównowaga energii i to właśnie czyni je użytecznymi kubitami. Z mechanicznymi rezonatorami, takimi jak wspomniana powyżej membrana, problem polega na tym, że są one harmoniczne. Poziomy energii pomiędzy wibracjami są równe, więc wykorzystanie ich jako kubitów jest niemożliwe. Zaproponowano więc rozwiązanie problemu, które miało polegać na połączeniu takiego mechanicznego oscylatora z najlepiej działającym elektromagnetycznym kubitem. Jednak czas działania takiej hybrydy uzależniony był od czasu dekoherencji kubita elektromagnetycznego. Całość nie sprawdzała się dobrze. Naukowcy z Zurychu wpadli więc na inny pomysł. Ich kubit składa się z elementu piezoelektrycznego umieszczonego na szafirowej płytce – to część mechaniczna – połączonego z szafirowym anharmonicznym elementem. Prototypowy układ osiąga czas koherencji rzędu 200 mikrosekund, działa więc 2-krotnie dłużej niż przeciętny kubit nadprzewodzący. Co prawda obecnie najlepsze kubity osiągają czas koherencji około 1 milisekundy, jest to więc około 5-krotnie dłużej niż mechaniczny kubit z Zurychu, ale mowa tutaj o wyjątkowych kubitach, nad którymi prace trwają od wielu lat. Szwajcarscy naukowcy zapewniają, że eksperymentując z różnymi materiałami i architekturami będą w stanie znacząco wydłużyć czas koherencji ich kubitu. Twórcy mechanicznego kubitu pracują teraz nad stworzeniem kwantowej bramki logicznej, odpowiednika bramek logicznych w tradycyjnych komputerach, za pomocą których przeprowadzane są obliczenia. « powrót do artykułu
- 66 odpowiedzi
-
- kubit
- komputer kwantowy
-
(i 1 więcej)
Oznaczone tagami:
-
Australijscy teoretycy kwantowi wykazali, że możliwe jest przełamanie obowiązującej od 60 lat bariery ograniczającej koherencję światła laserowego. Koherencja, czyli spójność wiązki światła, może być w przypadku laserów opisana jako liczba fotonów wyemitowanych jeden po drugim w tej samej fazie. To element decydujący o przydatności lasera do różnych zastosowań. Obowiązujące poglądy na temat spójności światła laserowego zostały nakreślone w roku 1958 przez amerykańskich fizyków, Arthura Schawlowa i Charlesa Townesa. Obaj otrzymali zresztą Nagrodę Nobla za swoje prace nad laserami. Teoretycznie wykazali, ze koherencja wiązki lasera nie może być większa niż kwadrat liczby fotonów obecnych w laserze, mówi profesor Howard Wiseman z Griffith University. Stał on na czele grupy naukowej złożonej z Griffith University i Macquarie University. Poczynili jednak pewne założenia odnośnie ilości energii dostarczanej do lasera oraz sposobu, w jaki jest ona uwalniana, by uformować wiązkę. Ich założenia miały wówczas sens i wciąż są prawdziwe w odniesieniu do większości laserów. Jednak mechanika kwantowa nie potrzebuje takich założeń, dodaje Wiseman. W naszym artykule wykazaliśmy, że prawdziwa granica koherencji, nakładana przez mechanikę kwantową, to czwarta potęga liczby fotonów przechowywanych w laserze, dodaje profesor Dominic Berry. Naukowcy zapewniają, że taką koherencję można osiągnąć w praktyce. Przeprowadzili bowiem symulację numeryczną i stworzyli oparty na mechanice kwantowej model lasera, który może osiągnąć ten nowy teoretyczny poziom spójności wiązki. Wiązka taka, poza spójnością, jest identyczna z wiązką konwencjonalnego lasera. Trzeba będzie poczekać na pojawienie się takich laserów. Udowodniliśmy jednak, że używając nadprzewodników można będzie zbudować taki laser, którego granice będą wyznaczane przez zasady mechaniki kwantowej. Obecnie ta sama technologia jest wykorzystywana do budowy komputerów kwantowych. Nasz laser może właśnie w nich znaleźć zastosowanie, mówi doktorant Travis Baker. Profesor Wiseman dodaje zaś, że prace jego zespołu każą postawić interesujące pytanie o możliwość skonstruowania bardziej energooszczędnych laserów. To przyniosłoby duże korzyści. Mam nadzieję, że w przyszłości będziemy mogli zbadać tę kwestię. « powrót do artykułu
-
- laser
- spójność wiązki lasera
-
(i 1 więcej)
Oznaczone tagami:
-
Amerykańscy fizycy ostrzegają, że w przyszłości komputery kwantowe będą musiały być chronione grubą warstwą ołowiu lub... przechowywane głęboko pod ziemią. Są bowiem niezwykle wrażliwe na zewnętrzne zakłócenia, w tym na promieniowanie jonizujące. Promieniowanie to może znacząco skracać czas koherencji kubitów (kwantowych bitów), a to z kolei niekorzystnie wpłynie na możliwość praktycznego wykorzystania technologii kwantowych. William Oliver i jego koledzy z Massachusetts Institute of Technology (MIT) oraz Pacific Northwest National Laboratory zmierzyli i modelowali wpływ promieniowania jonizującego na aluminiowe kubity umieszczone na krzemowym podłożu. Podczas swoich eksperymentów naukowcy wykorzystali dwa kubity, które poddano działaniu dobrze znanego źródła promieniowania jonizującego, cienkiego dysku wykonanego z miedzi-64. Naukowcy mierzyli tempo dekoherencji kubitów. Badali też, jak łatwo w wyniku oddziaływania promieniowania w kubitach pojawiają się kwazicząsteczki. Uzyskane w ten sposób informacje połączyli z danymi dotyczącymi promieniowania jonizującego w laboratorium MIT, pochodzącego zarówno z promieniowania kosmicznego jak i z naturalnych izotopów radioaktywnych. W tym przypadku były to głównie izotopy obecne w betonowych ścianach laboratorium. Okazało się, że w warunkach panujących w laboratorium górna granica czasu koherencji kubitów wynosi 3–4 milisekund. Po tym czasie następuje dekoherencja, zatem kubity stają się nieprzydatne do przeprowadzania obliczeń. Uczeni zweryfikowali uzyskane wyniki za pomocą dodatkowego niezależnego eksperymentu sprawdzając, jak można kubity chronić przed promieniowaniem jonizującym. W tym eksperymencie siedem kubitów – a raczej pojemnik z chłodziwem, w którym je przechowywano – zostało otoczonych 10-centymetrową warstwą ołowiu. Podnosząc i opuszczając osłonę byli w stanie zbadać wpływ promieniowania jonizującego oraz osłony na te same kubity. Potwierdzili, że limit czasu koherencji wynosi około 4 ms. Jednocześnie odkryli, że 10-centymetrowa osłona wydłuża ten czas o około 10%. Jednak biorąc pod uwagę fakt, że istnieją silniejsze od promieniowania jonizującego źródła dekoherencji kubitów, Oliver i jego zespół wyliczają, że 10-centymetrowa osłona wydłuża czas koherencji zaledwie o 0,2%. To niewiele, ale zdaniem naukowców stosowanie takich osłon będzie koniecznością. Zmniejszenie lub pozbycie się wpływu promieniowania jonizującego będzie krytycznym elementem praktycznego wykorzystania nadprzewodzących komputerów kwantowych, napisali na łamach Nature. Jedną z opcji, przynajmniej na początku rozwoju informatyki kwantowej, mogłoby być umieszczenie komputerów pod ziemią. To jednak wymaga dalszych badań. Oliver mówi, że najlepszym rozwiązaniem będzie stworzenie kubitów, które są mniej podatne na zakłócenia. « powrót do artykułu
-
- komputer kwantowy
- kubit
-
(i 3 więcej)
Oznaczone tagami:
-
Naukowcy z University of Chicago’s Pritzker School of Molecular Engineering ogłosili, że za pomocą prostej modyfikacji aż o 10 000 razy wydłużyli czas trwania koherencji stanu kwantowego. Co prawda udało się to w dość szczególnym przypadku kubitów w ciele stałym, ale uczeni twierdzą, że ich technika powinna sprawdzić się też w wielu innych systemach kwantowych. To przełom, który kładzie podwaliny pod nowe badania w dziedzinie nauk kwantowych. Szeroka możliwość zastosowania tego odkrycia w połączeniu z niezwykle prostą implementacją wskazuje, że będzie to miało zastosowanie w wielu aspektach inżynierii kwantowej. Pozwala to na prowadzenie nowych rodzajów badań, które dotychczas były uważane za niepraktyczne, wyjaśnia główny autor badań, profesor David Awschalom. Stany kwantowe są niezwykle delikatne. Ulegają zniszczeniu pod wpływem oddziaływania z zewnątrz. Jeden ze sposobów na ich zachowanie jest fizyczne odizolowanie systemu od otoczenia, sposób drugi to tworzenie jak najbardziej czystych materiałów. Obie metody są trudne i kosztowne. Naukowcy z Chicago znaleźli trzeci sposób. Nie próbujemy wyeliminować szumu z otoczenia. Przekonujemy system, że nie doświadcza szumu, mówi jeden z badaczy, Kevin Miao. Naukowcy wykorzystali standardowe impulsy elektromagnetyczne używane do kontroli systemów kwantowych, ale dodatkowo zaaplikowali wciąż zmieniające się pole magnetyczne. Dzięki jego precyzyjnemu dostrojeniu byli w stanie szybko zmieniać spin elektronów, dzięki czemu system wyłącza szum. To tak, jakbyśmy siedzieli na karuzeli, a wokół byliby krzyczący ludzie. Jeśli karuzela się nie porusza, wszystko dobrze słyszymy. Jednak jeśli się bardzo szybko kręci, ich krzyki zlewają się z tłem, wyjaśnia Miao. Ta niewielka zmiana spowodowała, że koherencję systemu kwantowego udało się utrzymać przez 22 milisekundy. To 4 rzędy wielkości więcej niż dotychczasowy rekord utrzymania koherencji systemu opartego na spinie elektronu. Nowy system jest w stanie niemal całkowicie wyłączyć niektóre formy fluktuacji temperatury, wibracji czy zakłóceń elektromagnetycznych. Awschalom nie wyklucza, że nowy system uda się skalować. Powinno to pozwolić na opracowanie praktycznych metod przechowywania informacji w spinie elektronu. Przedłużony czas koherencji pozwoli zaś komputerowi kwantowemu na przeprowadzenie bardziej złożonych operacji, umożliwi przesłanie na dłuższe odległości informacji kantowej z urządzeń bazujących na spinie, stwierdza uczony. Naukowcy twierdzą też, że – w przeciwieństwie do wielu innych dotychczasowych technik – ich wynalazek można zastosować w wielu różnych systemach kwantowych. Wiele interesujących technologii kwantowych zostało odłożonych na półkę, gdyż nie udawało się w nich utrzymać koherencji przez odpowiednio długi czas. Teraz – dzięki znaczącemu wydłużeniu czasu koherencji – będzie można do nich wrócić. A najlepsze, że można to tak niewiarygodnie łatwo osiągnąć. Podstawy teoretyczne naszej techniki są bardzo skomplikowane, jednak sama technika polegająca na dodaniu zmieniającego się pola magnetycznego jest bardzo prosta, mówi Miao. « powrót do artykułu
-
- komputery kwantowe
- koherencja
-
(i 1 więcej)
Oznaczone tagami: