Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów ' gromada galaktyk' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 5 wyników

  1. Wykonane przez Telekop Webba (JWST) zdjęcia znanej gromady galaktyk El Gordo (Grubas) ujawniły niezwykły obiekt, którego nigdy wcześniej nie widziano. Na wykonanych w podczerwieni fotografiach widać odległe zniekształcone galaktyki znajdujące się w tle. Teleskop Hubble'a, który niejednokrotnie fotografował El Gordo, nie wdział tych galaktyk. Grubas to gromada setek galaktyk, która powstała 6,2 miliarda lat temu. W swoim czasie była to najbardziej masywna struktura tego typu we wszechświecie. Pracujący z JWST naukowcy skupili się na El Gordo, wykorzystując gromadę w roli soczewki. Zjawisko soczewkowania grawitacyjnego jest często używane przez astronomów do obserwacji odległych obiektów. Wykorzystuje ono fakt, że światło przebiegające w pobliżu dużej masy – tutaj jest to gromada galaktyk – ulega zakrzywieniu. Masa taka działa jak soczewka, pokazując i powiększając to, co jest za nią. Na najnowszych obrazach El Gordo widać jasny łuk nazwany El Anzuelo (Haczyk na ryby). Tworzy go światło z galaktyki odległej od nas o 10,6 miliarda lat. Czerwony kolor El Anzuelo to skutek zarówno przechodzenia światła przez pył, jak i przesunięcia ku czerwieni, wynikającego z olbrzymiej odległości, jaką musiało ono pokonać, by do nas dotrzeć. Astronomowie wykonali korektę zniekształceń powodowanych przez El Gordo i stwierdzili, że wspomniana galaktyka ma kształ dysku, a jej średnica wynosi 26 000 lat świetlnych, zatem 4-krotnie mniej od średnicy Drogi Mlecznej. Byli też w stanie określić historię tworzenia się galaktyki. Okazało się, że w centrum galaktyki bardzo szybko skończył się gaz potrzebny do tworzenia się gwiazd. To zaś może wskazywać na istnienie tam supermasywnej czarnej dziury. Innym ważnym elementem fotografii jest cienka linia biegnąca na lewo od centrum. Nazwana La Flaca (Chudzina) przedstawia poddaną soczewkowaniu grawitacyjnemu galaktykę znajdującą się w odległości 11 miliardów lat świetlnych. W pobliżu widać kolejną galaktykę, w której naukowcy zauważyli czerwonego olbrzyma i nazwali go Quyllur, co w języku keczua oznacza gwiazdę. Dzięki soczewkowaniu grawitacyjnemu przez El Gordo Hubble już wcześniej odkrył inne gwiazdy, np. Earendel, jednak wszystkie były błękitnymi nadolbrzymami. Quyllur to pierwszy czerwony olbrzym zaobserwowany w odległości większej niż miliard lat świetlnych od Ziemi. Takie gwiazdy, przez ich duże przesunięcie ku czerwieni, może odkryć tylko Webb. Zdjęcia ujawniły też inne interesujące obiekty, jak np. młodą gromadę galaktyk, która zaczęła tworzyć się 12,1 miliarda lat temu. Prawdopodobnie składa się ona z 17 galaktyk. « powrót do artykułu
  2. Teleskop Webba pokazuje rzeczy, jakich nigdy nie widzieliśmy, w tym okres formowania się galaktyk. Webb pozwolił właśnie na szczegółowe obserwacje protogromady siedmiu galaktyk, o przesunięciu ku czerwieni z=7,9, co oznacza, że obserwujemy ją tak, jak wyglądała 650 milionów lat po Wielkim Wybuchu. Astronomowie określili jej prawdopodobną późniejszą ewolucję i doszli do wniosku, że z czasem utworzyła znaną obecnie Gromadę Warkocza Bereniki (Abell 1656), najgęstszą z gromad galaktyk. To szczególne, unikatowe miejsce przyspieszonej ewolucji galaktyk, a Webb daje nam bezprecedensową możliwość dokonania pomiarów prędkości tych siedmiu galaktyk, dzięki czemu możemy upewnić się, że tworzą one protogromadę, mówi główny autor badań, Takahiro Morishita z IPAC-California Institute of Technology. Dzięki precyzyjnym pomiarom dokonanym przez instrument NIRSpec naukowcy mogli potwierdzić odległość galaktyk oraz prędkość ich przemieszczania się przez halo ciemnej materii, która wynosi około 1000 km/s. Dane spektrograficzne zaś pozwoliły na modelowanie i mapowanie przyszłej ewolucji gromady. Po analizie naukowcy uznali, że najprawdopodobniej utworzyła ona Abell 1656. Obserwujemy te odległe galaktyki jak krople wody w różnych rzekach i możemy stwierdzić, że z czasem staną się one częścią jednego olbrzymiego nurtu, dodaje Benedetta Vulcani z Narodowego Instytutu Astrofizyki we Włoszech. Webb dostrzegł protogromadę dzięki wykorzystaniu zjawiska soczewkowania grawitacyjnego zapewnionego przez Gromadę Pandora (Abell 2744). Obserwowanie początków powstawania wielkich gromad galaktyk jak Pandora czy Warkocz Bereniki jest bardzo trudne, gdyż wszechświat się rozszerza, a to oznacza, że docierające do nas z coraz większej odległości fale świetlne są coraz bardziej rozciągnięte, przesuwając się ku podczerwieni. Przed Webbem nie dysponowaliśmy instrumentem, który rejestrowałby podczerwień w wystarczająco dużej rozdzielczości. Teleskop Webba powstał właśnie po to, by wypełnić tę lukę w astronomii. I, jak widać, świetnie się sprawdza. Sprawdzają się też przewidywania mówiące, że największą korzyść osiągniemy ze współpracy Webba z Hubble'em.Te siedem galaktyk w protogromadzie zostało wytypowanych właśnie przez Teleskop Hubble'a jako potencjalnie interesujący cel badawczy. Hubble nie ma jednak możliwości obserwowania światła o długości fali większej niż bliska podczerwień, dlatego też nie był w stanie dostarczyć nam zbyt wielu danych. Uzyskaliśmy je dzięki Webbowi. Co więcej, autorzy badań nad protogromadą przypuszczają, że współpraca Webba z Roman Grace Telescope, który ma zostać wystrzelony w 2027 roku, a który bazuje na jednym z teleskopów przekazanych NASA przez agencję wywiadowczą, może dostarczyć nam jeszcze więcej informacji o początkach gromad galaktyk. « powrót do artykułu
  3. Teleskop Webba przyłapał masywne galaktyki podczas procesu tworzenia przez nie gromady skupionej wokół ekstremalnie czerwonego kwazara. Zaskakujące odkrycie pozwoli nam lepiej zrozumieć, jak we wczesnym wszechświecie dochodziło do tworzenia gromad galaktyk i powstania wszechświata takiego, jakim znamy go dzisiaj. Kwazary to rodzaj galaktyki aktywnej. Mają one olbrzymią jasność, a w ich centrum znajduje się supermasywna czarna dziura. Wpadający w nią gaz powoduje, że kwazar świeci tak jasno, iż przyćmiewa wszystkie gwiazdy w galaktyce. Teleskop Webba badał kwazar SDSS J165202.64+172852.3 odległy od nas o 11,5 miliarda lat świetlnych. Ze względu na przesunięcie ku czerwieni, zjawisko polegające na tym, iż im bardziej odległe źródło, tym większą długość fali ma docierające z niego światło, kwazar ten jest czerwony. To zaś powoduje, że Webb, wyspecjalizowany w obserwowaniu światła podczerwonego, jest świetnym instrumentem do jego obserwacji. Nasz kwazar to jedna z najpotężniejszych znanych nam aktywnych galaktyk znajdujących się w tak dużej odległości. Astronomowie od dawna spekulowali, że potężna emisja z kwazaru może wywoływać zjawisko zwane „galaktycznym wiatrem”, który wypycha gaz z galaktyki macierzystej i może w znaczącym stopniu wpływać na formowanie się w niej gwiazd. Naukowcy, którzy już wcześniej obserwowali SDSS J165202.64+172852.3 za pomocą Hubble'a i innych teleskopów spekulowali, że potężna emisja może być sygnałem, że galaktyka ta łączy się z inną, której nie można dostrzec. Teraz jednak dysponujemy Teleskopem Webba. Grupa naukowców wykorzystała spektrograf NIRSpec, który jest w stanie zebrać dane z całego pola widzenia teleskopu i obserwowac nie tylko kwazar, ale całą jego galaktykę macierzystą oraz jej otoczenie. Uczeni dostrzegli coś, czego się nie spodziewali. Wokół kwazaru krążą co najmniej 3 inne galaktyki, a dzięki możliwościom Webba udało się zbadać ruch całego otaczającego materiału, co pozwoliło stwierdzić, że kwazar jest centrum formującej się gromady galaktyk. Znamy jedynie kilka protogromad galaktyk z tak wczesnego czasu po powstaniu wszechświata. Bardzo trudno jest je znaleźć, gdyż niewiele  gromad mogło się uformować w tak krótkim czasie po Wielkim Wybuchu, mówi główna autorka badań, doktor Dominika Wylezalek z Uniwersytetu w Heidelbergu. Astronomowie przypuszczają, że jeszcze nie dostrzegli wszystkiego. Archiwalne dane z Hubble'a sugerują, że galaktyk wokół kwazaru może być więcej. Nasze wstępne dane wskazują na silne interakcje pomiędzy sąsiadującymi galaktykami, dodaje Andrey Vayner z Uniwersytetu Johnsa Hopkinsa. Trzy potwierdzone galaktyki krążą wokół siebie z bardzo dużą prędkością, co wskazuje, że znajduje się tam dużo masy. Biorąc pod uwagę odległości pomiędzy nimi a kwazarem można przypuszczać, że to jeden z najbardziej gęstych obszarów we wczesnym wszechświecie. « powrót do artykułu
  4. Galaktyki, gwiazdy, planety i ich księżyce obracają się wokół własnych osi. Teraz międzynarodowy zespół badawczy dodał do tych obiektów kosmiczne włókna, skupiska gromad i supergromad galaktyk, które rozciągają się na odległość setek milionów lat świetlnych. Tym samym są to największe obracające się obiekty w przestrzeni kosmicznej. Ich ruch może wyjaśniać, dlaczego galaktyki i inne obiekty tak chętnie wirują wokół własnej osi. Naukowcy nie do końca rozumieją fenomen obracania się wokół własnej osi na skalę kosmiczną. Jednym ze sposobów zrozumienia tego zjawiska jest próba poznania obszarów, w których rotacja ustaje. Naukowcy z Instytutu Astrofizyki im. Leibnitza w Poczdamie, pracujący pod kierunkiem Noama Liebskinda, postanowili sprawdzić, czy włókna galaktyczne również się obracają. Struktury te mają długość setek milionów, a szerokość zaledwie kilku milionów lat świetlnych. Przypominają gigantyczne mosty, łączące ze sobą gromady galaktyk. Już wcześniejsze badania sugerowały, że włókna mogą być miejscami, gdzie rotacja ustaje. Jednak grupa Liebskinda, we współpracy z uczonymi z Francji, Chin i Estonii, wywróciła te przekonania do góry nogami. Galaktyki, wędrujące wzdłuż włókien, poruszają się po orbitach przypominających helisę czy też korkociąg, krążąc wokół środka włókna. Nigdy wcześniej nie obserwowaliśmy takiego ruchu obrotowego na tak wielką skalę. To wskazuje, że musi istnieć nieznany mechanizm fizyczny napędzający ten ruch, mówi Liebskind. Naukowcy odkryli ten ruch analizując dane ze Sloan Digital Sky Survey, w ramach którego gromadzone są informacje o świetle docierającym do nas z setek tysięcy galaktyk. Jako że nie jesteśmy w stanie mierzyć obrotu w tak gigantycznej skali, naukowcy badali przesunięcie galaktyk ku czerwieni i ku światłu niebieskiemu. W ten sposób mogli określić, jak szybko galaktyki przybliżają się i oddalają od nas. Aby tego dokonać przeanalizowali tysiące włókien i zbadali prędkość galaktyk równolegle do włókien. Gdy większość galaktyk z jednej strony włókien podążała ku widmu niebieskiemu, a większość z drugiej – ku czerwonemu, uczeni doszli do wniosku, że włókna wirują wokół własnej osi. Prędkość tego wirowania oszacowali na niemal 100 km/s. Innym ważnym spostrzeżeniem jest odkrycie, iż włókna przy końcach bardziej masywnych gromad galaktyk wirują szybciej. Liebskind przyznaje, że nie rozumie do końca tego zjawiska, ale być może istnieje związek grawitacyjny pomiędzy obrotem włókien a zbiorami galaktyk. Być może efekt pływowy lub pole grawitacyjne tych gromad w jakiś sposób napędza lub wywołuje obrót. « powrót do artykułu
  5. Dzięki obserwacji gromady galaktyk SpARCS104922.6+564032.5 naukowcy dowiedzieli się, co się dzieje, gdy gigantyczna czarna dziura nie ma wpływu na galaktyki. Badania wykazały, że pasywnością czarnej dziury można wyjaśnić olbrzymie tempo formowania się gwiazd w gromadzie galaktyk. Gromady mogą składać się z setek lub tysięcy galaktyk. Są one pełne gorącego gazu, którego masa jest większa od masy samych galaktyk. Obecność supermasywnej czarnej dziury w centralnej galaktyce gromady zwykle powoduje, że podgrzany jej obecnością gaz nie ostyga na tyle, by tworzyć wielką liczbę gwiazd. W ten sposób czarne dziury wpływają i kontrolują aktywność oraz ewolucję ich macierzystych gromad galaktyk. Gromada SpARCS1049 znajduje się w odległości niemal 10 miliardów lat świetlnych od Ziemi. Dała ona astronom odpowiedź na pytanie, co się dzieje, gdy czarna dziura w gromadzie jest nieaktywna. Przeprowadzone badania wykazały właśnie, że w SpARCS1049 tempo formowania się gwiazd wynosi 900 mas Słońca rocznie. To ponad 300-krotnie szybciej niż tempo formowania się gwiazd w Drodze Mlecznej. Myszy harcują, gdy kota nie ma w domu, skomentowała główna autorka badań, Julie Hlavacek-Larrondo w Uniwersytetu w Montrealu. Tutejszy kot, czarna dziura, jest bardzo spokojny, a myszy – czyli gwiazdy – są niezwykle zapracowane. W większej części klastra temperatura gazu wynosi około 65 milionów stopni. Jednak w miejscu gwałtownego formowania się gwiazd gaz jest bardziej gęsty, a jego temperatura to zaledwie 10 milionów stopni. Obecność tego chłodniejszego gazu wskazuje, że istnieją jeszcze nie wykryte rezerwuary gazu o jeszcze niższej temperaturze, gdzie formuje się jeszcze więcej gwiazd. Bez czarnej dziury pompującej energię w otoczenie, gaz może ostygnąć na tyle, że dochodzi do gwałtownego formowania się gwiazd. Takie nieaktywne czarne dziury mogły odgrywać kluczową rolę we wczesnym wszechświecie, wyjaśnia współautor badań Carter Rhea z University of Montreal. Badacze nie zaobserwowali ani dżetu czarnej dziury, ani nie zauważyli promieniowania w zakresie X, które powstałoby, gdyby czarna dziura wchłaniała otaczającą ją materię. Dlatego też uznali, że czarna dziura jest nieaktywna. Wielu astronomów uważało, że bez obecności czarnych dziur tempo formowania się gwiazd wymknęłoby się spod kontroli, mówi odkrywca Tracy Webb z McGill University, która odkryła gromadę SpARCS1049 w 2015 roku. Teraz mamy dowód obserwacyjny, że tak naprawdę się dzieje. Dlaczego zaś czarna dziura w SpARCS1049 jest nieaktywna? Może to wyjaśniać pozycja najgęstszego gazu względem centrum gromady. Prawdopodobnie czarna dziura utraciła źródło zasilania. W jej pobliżu nie ma już materii, którą mogłaby wchłonąć, przez co jej obecność nie powoduje ciągłego podgrzewania gazu. Przyczyną takiego a nie innego położenia najgęstszego gazu względem centrum gromady może być np. zderzenie dwóch mniejszych gromad galaktyk. W jego wyniku powstała SpARCS1049, ale jednocześnie kolizja odsunęła gaz od galaktyki centralnej. Ze szczegółami badań można zapoznać się w artykule Evidence of runaway gas cooling in the absence of supermassive black hole feedback at the epoch of cluster formation.   « powrót do artykułu
×
×
  • Dodaj nową pozycję...