Znajdź zawartość
Wyświetlanie wyników dla tagów ' gluon' .
Znaleziono 1 wynik
-
Fizycy znaleźli nowy sposób na wejrzenie w głąb jądra atomu. Okazuje się, że można tego dokonać śledząc interakcje pomiędzy światłem a gluonami, bezmasowymi cząstkami, które pośredniczą w oddziaływaniach silnych. Nowo opracowana metoda wykorzystuje nowo odkryty rodzaj kwantowej interferencji pomiędzy różnymi cząstkami. Protony i neutrony, z których składa się jądro atomowe, są zbudowane z kwarków. Jednak same kwarki byłyby niestabilne, potrzebują gluonów, nośnika oddziaływań silnych, które na podobieństwo kleju utrzymują je razem. Gluony są zbyt małe, byśmy mogli je dostrzec, ale wchodzą w interakcje z fotonami, w wyniku czego powstają krótko żyjące mezony ρ (rho), które rozpadają się do pionów. Uczeni z Brookhaven National Laboratory użyli akceleratora Relativistic Heavy Ion Collider (RHIC), w którym przyspieszane są jądra atomów złota i uranu. Podróżujące jądra były otoczone chmurą spolaryzowanych fotonów. Minęły się one z olbrzymią prędkością w odległości równej kilku średnicom jądra. Dzięki tak małej odległości chmury fotonów otaczające każde z jąder weszły w interakcje z gluonami drugiego jądra. Śledząc prędkości i kąty cząstek pochodzących z tych interakcji można bardzo precyzyjnie określić polaryzację fotonów, a to z kolei pozwala na stworzenie mapy dystrybucji gluonów zarówno w kierunku polaryzacji oraz prostopadle do niego. Taka technika daje nam możliwość znacznie bardziej precyzyjnych pomiarów rozkładu gluonów. Naukowcy badali w akceleratorze kąty i prędkości pionów o ładunku dodatnim i ujemnym pochodzących ze wspomnianych interakcji. W ten sposób mogli stworzyć szczegółową mapę rozkładu gluonów w jądrach atomów złota i uranu. Technika obserwacji jest podobna do pozytonowej tomografii emisyjnej, ale działa w skali femtometrów (10-15 m). Pozwoli ona lepiej zrozumieć, w jaki sposób gluony biorą udział w tworzeniu jądra atomowego. Wcześniejsze badania pozwalały jedynie określić, jak daleko od centrum jądra znajduje się każdy z gluonów, gdyż brakowało wówczas precyzyjnych informacji o polaryzacji. Skutkiem tego były błędy interpretacyjne, w wyniku których tak badane jądra wydawały się większe niż wykazywały to inne eksperymenty oraz modele teoretyczne. Naukowcy rozwiązali więc zagadkę trapiącą fizyków od 20 lat. Teraz wiemy, że podczas poprzednich, mniej precyzyjnych pomiarów, mylono pęd i energię fotonu z gluonami. Uzyskane przez nas obrazy są tak precyzyjne, że możemy nawet zauważyć, gdzie w dużym jądrze znajdują się protony, a gdzie neutrony, cieszą się autorzy badań. Ponadto wzorce interferencji pomiędzy funkcjami falowymi obserwowanych pionów wykazały, że – mimo iż miały przeciwne ładunki – były one splątane. To pierwsza eksperymentalna obserwacja interferencji między niepodobnymi cząstkami. Niewykluczone, że uda się dzięki temu opracować nowe sposoby uzyskiwania stanów splątanych. « powrót do artykułu
-
- jądro atomowe
- foton
-
(i 2 więcej)
Oznaczone tagami: