Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów ' diketopirolopirol' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 1 wynik

  1. Polscy chemicy opracowali stabilne barwniki, silnie emitujące światło czerwone. Umożliwią one badanie mikroskopem fluorescencyjnym głęboko położonych struktur biologicznych i obserwować choćby przeciwciała lub białka biorące udział w rozwoju chorób uszkadzających mózg. A jednak świeci Zaprojektowanie, a następnie zsyntetyzowanie lepszych barwników pozwoli na dalszy rozwój mikroskopii STED (Stimulated Emission Depletion) oraz w przyszłości na jej użycie w diagnostyce medycznej – mówi prof. Daniel Gryko z Instytutu Chemii Organicznej PAN, cytowany w informacji przesłanej przez FNP, która finansowała badania. Polscy naukowcy, we współpracy z Francuzami i Niemcami, stworzyli nową klasę trwałych znaczników fluorescencyjnych – nowy typ diketopirolopiroli – wykazujących niezwykle intensywną emisję światła czerwonego. Prof. Gryko podkreśla, że czerwone światło jest najlepiej widoczne pod mikroskopem fluorescencyjnym. Dlatego nowe związki organiczne będzie można zastosować jako sondy fluorescencyjne. Wyniki badań przedstawiono w formie publikacji w czasopiśmie „Angewandte Chemie”. Publikacja ta – jak informuje FNP – zmienia sposób patrzenia na związki, które w swojej strukturze mają dwie grupy nitrowe. Dotychczas sądzono, że grupa nitrowa prawie zawsze tłumi fluorescencję. A jednak diketopirolopirole emitują światło, choć mają taką właśnie strukturę. Badacze wykazali, że przy spełnieniu odpowiednich założeń grupa nitrowa nie wpływa na fluorescencję związku. Jest to istotne, bo często taka grupa podwyższa stabilność znacznika. Odkrycie jest w trakcie patentowania. Od zakreślaczy po zaawansowaną medycynę Fluorescencja to zdolność do emitowania światła o określonym kolorze, na skutek wzbudzenia promieniowaniem świetlnym o określonej długości. Związki wykazujące fluorescencję są często wykorzystywane w praktyce - od pisaków, tzw. zakreślaczy po tablety, laptopy, a nawet telewizory z wyświetlaczami zbudowanymi z tzw. OLED-ów, czyli diod na bazie związków organicznych, emitujących światło niebieskie, zielone i czerwone. Związki cechujące się fluorescencją znalazły też zastosowanie w nowoczesnej biologii molekularnej i diagnostyce medycznej. Wykorzystuje się je do obserwacji – przy pomocy mikroskopów fluorescencyjnych – różnych organelli komórkowych, białek, a także do śledzenia procesów zachodzących w komórkach – mówi prof. Daniel Gryko. Tłumaczy, że mikroskop fluorescencyjny ma znacznie większą rozdzielczość, niż konwencjonalny mikroskop optyczny, który (z uwagi na falową naturę światła) nie pozwala na obrazowanie struktur mniejszych, niż około 200 nanometrów. Rozdzielczość o kilka rzędów wielkości większą niż mikroskop optyczny ma mikroskop elektronowy, ale można w nim obserwować wyłącznie martwe obiekty, umieszczone w próżni i bombardowane wiązką elektronów. Mikroskop fluorescencyjny pozwala badać żywe organizmy i procesy, jakie w nich naturalnie zachodzą. Do przeprowadzenia takich obserwacji potrzeba właśnie barwników fluorescencyjnych lub znaczników. Barwniki te muszą przenikać przez błony komórkowe żywych komórek. Dołącza się je do obiektu, który ma być uwidoczniony pod mikroskopem, np. konkretnego białka, i w ten sposób można obserwować np. specyficzne przeciwciała lub białka biorące udział w rozwoju chorób uszkadzających mózg: w chorobie Parkinsona, Alzheimera czy Huntingtona. Najbardziej zaawansowaną techniką mikroskopii fluorescencyjnej jest mikroskopia typu STED, w której oprócz wiązki światła wzbudzającego, wykorzystuje się dodatkową wiązkę, która wygasza fluorescencję na brzegach wzbudzonego punktu. Dzięki temu uzyskany obraz ma bardzo wysoką rozdzielczość. Opracowanie mikroskopii fluorescencyjnej typu STED zostało uhonorowane Nagrodą Nobla w 2014 roku. Dzięki niej możliwe stało się precyzyjne badanie m.in. wzajemnych oddziaływań białek w komórkach czy różnicowania się tkanek w rozwoju embrionalnym. « powrót do artykułu
×
×
  • Dodaj nową pozycję...