Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów ' aparat fotograficzny' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 2 wyniki

  1. Budowany od 7 lat największy aparat fotograficzny na świecie jest już niemal gotowy. Jeśli wszystko pójdzie zgodnie z planem, w maju 2023 roku aparat zostanie zabrany z clean roomu w SLAC National Accelerator Laboratory w Kalifornii i poleci do Chile, gdzie specjaliści zamontują go w budowanym właśnie Vera C. Rubin Observatory. Wszystkie elementy aparatu zostały już w pełni złożone, mówi inżynier Hannah Pollek. Aparat posiada największe na świecie soczewki o średnicy 157 cm. Będzie do nich trafiało światło odbijane od trzech luster. Teleskop Vera C. Rubin Observatory będzie jednorazowo obserwował nieboskłon o szerokości 3,5 stopnia, czyli siedmiokrotnie większej od Księżyca w pełni. Gigantyczny aparat wykona dwa 15-sekundowe ujęcia obserwowanego obszaru, a następnie teleskop zostanie przekierowany na inny obszar nieboskłonu. W ten sposób, całymi latami, nowoczesne obserwatorium astronomiczne będzie badało południowy nieboskłon i sfotografuje około 20 miliardów galaktyk w ciągu 10 lat. Każdej nocy dostarczy astronomom 1,5 TB danych. Badania te będą prowadzone za pomocą 3,2-gigapikselowego aparatu fotograficznego. To rozdzielczość tak duża, że pozwala na zarejestrowanie piłeczki golfowej z odległości 25 kilometrów. Płaszczyzna ogniskowa aparatu ma szerokość 60 centymetrów i składa się ze 189 czujników CCD o rozdzielczości 16 megapikseli każdy. CCD wraz z towarzyszącą im elektroniką zostały połączone w grupy po 9 CCD w każdej. Powstało w ten sposób 21 modułów, które wraz z 4 dodatkowymi modułami, które służą pozycjonowaniu aparatu, umieszczono na podstawie. Każdy z takich modułów kosztował około 3 milionów dolarów. Każdy z pikseli ma szerokość około 10 mikrometrów, a całość jest niezwykle płaska. Nierówności na całej płaszczyźnie ogniskowej nie przekraczają 1/10 grubości ludzkiego włosa. Dzięki tak małym pikselom i tak płaskiej powierzchni, możliwe jest wykonywanie zdjęć w niezwykle wysokiej rozdzielczości. W połączeniu z możliwościami lustra teleskopu Vera C. Rubin Observatory pozwoli na rejestrowanie obiektów, które są 100 milionów razy mniej jasne, niż minimalna jasność wymagana, by zauważyło je ludzkie oko. To właśnie te możliwości sprawiają, że środowisko naukowe z niecierpliwością czeka na uruchomienie nowego obserwatorium. Jednak aby osiągnąć tak imponującą czułość, czujniki rejestrujące światło muszą zostać schłodzone. Dlatego za obiektywem zostanie umieszczony m.in. kriostat, który ma utrzymać CCD w temperaturze -100 stopni Celsjusza. To pozowali na wyeliminowanie większości szumu, jaki mogłyby przechwycić czujniki. To jednak nie jedyne wyzwanie techniczne. Aparat potrzebuje do pracy ok. 1100 watów energii, a inżynierowie wciąż udoskonalają jego system chłodzenia. Ostatnio zdecydowali się na wykorzystanie innego płynu chłodzącego, co pociągnęło za sobą konieczność przebudowy całej instalacji chłodzącej. Do zamontowania pozostało jeszcze sześć filtrów, z których każdy przepuszcza światło o konkretnej długości fali. Pięć filtrów zostanie umieszczonych na karuzeli, a szósty znajdzie się w specjalnym schowku. Mechanizm potrzebuje około 2 minut, by umieścić odpowiedni filtr pomiędzy soczewkami a czujnikami CCD. Po zamontowaniu filtrów aparat zostanie zwrócony obiektywem w stronę podłogi i rozpoczną się testy w warunkach słabego oświetlenia. Gdy już całość będzie gotowa to transportu, z aparatu zostaną wymontowane soczewki i inne szklane elementy. Aparat zostanie umieszczony w specjalnie zabezpieczonym kontenerze, a całość poleci z San Francisco do Santiago. Obecne plany przewidują, że pierwsze zdjęcie nieba aparat wykona w 2024 roku. « powrót do artykułu
  2. Współpraca naukowców z Princeton University i University of Washington zaowocowała powstaniem aparatu fotograficznego wielkości kryształu soli. Miniaturowe aparaty powstawały już wcześniej, jednak rejestrowały rozmyte obrazy o ograniczonym polu widzenia. Amerykanie poradzili sobie z tymi problemami i zapewniają, że ich aparat jest w stanie rejestrować pełnokolorowe obrazy o takiej jakości, jaką rejestrują standardowe aparaty o 500 tysięcy razy większych obiektywach. Nowe urządzenie może zostać wykorzystane do minimalnie inwazyjnej endoskopii czy jako systemy wizualne dla miniaturowych robotów. A tysiące takich aparatów umieszczonych na dużej powierzchni pozwoli na zmienienie jej w wielki aparat fotograficzny. W tradycyjnych aparatach fotograficznych stosuje się odpowiednio wyprofilowane szklane lub plastikowe soczewki skupiające światło. Miniaturowy aparat korzysta zaś z metapowierzchni. Ma ona wymiary zaledwie 0,5 x 0,5 milimetra ale zmieszczono na niej 1,6 miliona cylindrycznych słupków. Każdy z nich ma unikatową geometrię i działa jak antena optyczna. Dzięki indywidualnemu dobraniu kształtu każdego ze słupków możliwe było odpowiednie skorygowanie powierzchni falowej docierającego doń światła. Słupki zaprojektowano tak, by ich interakcja ze światłem skutkowała najostrzejszym obrazem o największym polu widzenia wśród wszystkich w pełni kolorowych aparatów fotograficznych wykorzystujących metapowierzchnie. Głównym osiągnięciem naukowców z Princeton i Seattle jest zintegrowanie projektu powierzchni optycznej i algorytmu przetwarzania sygnałów. To znakomicie zwiększyło możliwości aparatu w naturalnym świetle. Wcześniej, by w aparatach wykorzystujących metapowierzchnie uzyskać wysokiej jakości obraz, konieczne było zastosowanie lasera lub stworzenie w laboratorium innych idealnych warunków. Naukowcy porównali swój aparat z innymi wykorzystującymi metapowierzchnie oraz z tradycyjnymi aparatami. Nie licząc nieco rozmytego obrazu na krawędziach, jakość zdjęć z ich miniaturowego aparatu jest porównywalna z jakością zdjęć z aparatu o obiektywie o 500 000 razy większej objętości. Udało się też uniknąć najpoważniejszych problemów trapiących dotychczas miniaturowe aparaty korzystające z metapowierzchni: małego pola widzenia, ograniczonych możliwości rejestracji pełnego spektrum światła widzialnego czy dużych deformacji obrazu. Olbrzymim osiągnięciem jest odpowiednia współpraca setek tysięcy nanoanten z algorytmem przetwarzającym obraz. Dotychczas nie wiedziano, jak to zrobić. Ze względu na wielką liczbę nanoanten, ich różną konfigurację i złożone interakcje pomiędzy nimi a światłem, opracowanie odpowiedniego algorytmu wymagało długiego czasu i olbrzymich zasobów pamięci. Współautor badań, Shane Colburn, poradził sobie z tym problemem tworząc efektywne przybliżenie interakcji pomiędzy światłem a metapowierzchnią. Autorem samej metapowierzchni jest zaś James Whitehead, który stworzył ją na bazie azotku krzemu. To materiał kompatybilny ze współczesnymi technologiami stosowanymi w przemyśle półprzewodnikowych, co oznacza, że można go będzie masowo produkować i będzie tańszy niż tradycyjne soczewki. Zaprezentowane tutaj podejście nie jest niczym nowym, jednak jest to pierwszy system, w którym połączono metapowierzchnię i oparty na sieciach neuronowych system przetwarzania informacji. Najważniejszym osiągnięciem jest tutaj osiągnięcie kompatybilności pomiędzy rozmiarami, kształtem i lokalizacją milionów punktów na metapowierzchni, a parametrami używanymi przez algorytmy przetwarzające dane i uzyskanie dzięki temu obrazu o wymaganej jakości, chwali autorów badań Joseph Mait, były główny naukowiec w U.S. Army Research Laboratory. Obecnie uczeni z Princeton i Seattle pracują nad wyposażeniem swojego aparatu w większe możliwości obliczeniowe. Chcą w ten sposób nie tylko poprawić jakość obrazu, ale również wyposażyć go w możliwość wykrywania obiektów oraz inne cechy przydatne w obrazowaniu medycznym i robotyce. Takie ultrakompaktowe aparaty pozwolą też na zamianę powierzchni w duże aparaty. Cały tył smartfona mógłby być jednym dużym aparatem fotograficzym. Już teraz możemy zacząć myśleć o zupełnie nowej architekturze urządzeń przyszłości, mówi Felix Heide z Princeton University. « powrót do artykułu
×
×
  • Dodaj nową pozycję...