Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów ' Słońce' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 35 wyników

  1. Darwin był pierwszym naukowcem, który zwrócił uwagę na ruchy nutacyjne roślin. Od tamtej pory badający je uczeni dowiedzieli się, że te zwykle koliste lub wahadłowe ruchy służą, między innymi, poszukiwaniu podpory przez pędy. Jednak ruchy nutacyjne wykonuje też podążający za słońcem słonecznik. I, jak wszyscy wiemy, chodzi tutaj o zwrócenie się w stronę źródła światła. Jednak, jak dowodzą naukowcy z Izraela i USA, nie jest to działanie wyłącznie samolubne. Okazuje się bowiem, że gęsto rosnące słoneczniki poruszają się tak, by rzucać jak najmniej cienia na sąsiadujące rośliny. Już wcześniejsze badania pokazały, że jeśli słoneczniki są gęsto zasiane, ich wzorzec wzrostu przypomina zygzak. Jedna rośilna jest wychylona do przodu, sąsiednia do tyłu. W ten sposób cała społeczność maksymalizuje dostęp do światła słonecznego. Co więcej, potrafią odróżnić cień rzucany na przykład przez budynek, od cienia innych roślin. Jeśli wyczują cień budynku, nie zmieniają kierunku wzrostu, bo wiedzą, że to nic nie da. Jeśli jednak wyczują cień innej rośliny, rosną tak, by od tego cienia się oddalić, bo i ta roślina będzie się oddalała, wyjaśnia główna autorka badań, profesor Yasmine Meroz z Uniwersytetu w Tel Awiwie. Autorzy badań prowadzili eksperyment, w czasie którego co kilka minut fotografowali gęsto zasiane słoneczniki. Mogli w ten sposób śledzić ruchy każdej z roślin. Przeanalizowaliśmy ruch każdej z roślin w grupie, obserwowaliśmy ich taniec podczas wzrostu i przekonaliśmy się, że każda roślina stara się rosnąć tak, by nie blokować światła swojemu sąsiadowi. Zaskoczeniem dla nas był olbrzymi zakres ruchów, sięgający trzech rzędów wielkości. W zależności od sytuacji rośliny albo niemal nie zmieniały swojej pozycji, albo przesuwały się nawet o 2 centymetry co kilka minut w różnych kierunkach, dodaje uczona. Ta duża elastyczność ruchów pozwala słonecznikom na zadbanie o sąsiada i zmaksymalizowanie jego fotosyntezy. Gdyby słoneczniki były zdolne do wykonywania tylko ruchów o dużym zakresie, lub tylko tych o małym zakresie, częściej by się przesłaniały i rzucały cień na sąsiadów. To przypomina taniec w zatłoczonym miejscu, gdzie każdy z tancerzy porusza się tak, by wokół było jak najwięcej miejsca.[...] Dynamika ruchu słoneczników to połączenie reakcji na cień innych roślin z przypadkowymi ruchami niezależnymi od zewnętrznego bodźca, stwierdza Meroz. « powrót do artykułu
  2. Indie nie ustają w podboju kosmosu. Przed 9 laty kraj zadziwił świat wprowadzając przy pierwszej próbie swojego satelitę na orbitę Marsa, a przed dwoma tygodniami umieścił na Księżycu lądownik i łazik. Teraz dowiadujemy się, że Indyjska Organizacja Badań Kosmicznych (ISRO) z powodzeniem wystrzeliła pierwszą indyjską misję w kierunku Słońca. Misja Aditya-L1, nazwana tak od boga Słońca, zostanie umieszczona – jak wskazuje drugi człon jej nazwy – w punkcie libracyjnym L1. Znajduje się on pomiędzy Słońcem a Ziemią, w odległości około 1,5 miliona kilometrów od naszej planety. Dotrze tam na początku przyszłego roku. Dotychczas pojazd z powodzeniem wykonał dwa manewry orbitalne. Na pokładzie misji znalazło się siedem instrumentów naukowych. Jej głównymi celami jest zbadanie korony słonecznej, wiatru słonecznego, zrozumienie procesów inicjalizacji koronalnych wyrzutów masy, rozbłysków i ich wpływów na pogodę kosmiczną w pobliżu Ziemi, zbadanie dynamiki atmosfery Słońca oraz rozkładu wiatru słonecznego i anizotropii temperatury. Za badania korony naszej gwiazdy i dynamiki koronalnych wyrzutów masy odpowiadał będzie instrument VELC (Visible Emission Line Coronograph), z kolei SUI (Solar Ultra-violet Imaging Telescope) zobrazuje foto- i chromosferę gwiazd w bliskim ultrafiolecie i zbada zmiany irradiancji. APEX i PAPA (Aditya Solar wind Particle EXperiment i Plasma Analyser Package for Aditya) będą opowiadały za badania wiatru słonecznego, jonów i rozkładu energii, a dzięki instrumentom SoLEX i HEL1OS (Solar Low Energy X-ray Spectrometer, High Energy L1 Orbiting X-ray Spectrometer) pogłębimy naszą wiedzę o rozbłyskach w zakresie promieniowania rentgenowskiego. Ostatni z instrumentów, magnetometr, zbada pola magnetyczne w L1. « powrót do artykułu
  3. Astronomowie odkryli brązowego karła, którego powierzchnia jest znacznie bardziej gorąca niż powierzchnia Słońca. Tymczasem brązowe karły nie są gwiazdami. To obiekty gwiazdopodobne, których masa jest zbyt mała, by mógł w nich zachodzić proces przemiany wodoru w hel. Mają masę co najmniej 13 razy większą od Jowisza. Od olbrzymich planet różnie je to, że są zdolne do fuzji deuteru. Po jakimś czasie proces ten zatrzymuje się. Najgorętsze i najmłodsze brązowe karły osiągają temperaturę ok. 2500 stopni Celsjusza. Później stygną. Temperatura najstarszych i najmniejszych z nich to około -26 stopni. W najnowszym numerze Nature Astronomy naukowcy opisali brązowego karła, którego temperatura powierzchni sięga 7700 stopni Celsjusza. To znacznie więcej, niż 5500 stopni, jaką ma temperatura Słońca. Nic więc dziwnego, że gdy na początku XXI wieku po raz pierwszy zauważono ten obiekt, omyłkowo go sklasyfikowano. Dopiero powtórna analiza danych przeprowadzona przez Na'amę Hallakoun z izraelskiego Instytutu Naukowego Weizmanna i jej zespół pokazały, z czym mamy do czynienia. Nasz brązowy karzeł ma tan olbrzymią temperaturę, gdyż obiega po bardzo ciasnej orbicie białego karła WD 0032-317. To właśnie jego promieniowanie ogrzewa brązowego karła do tak olbrzymich temperatur. Brązowy karzeł znajduje się w obrocie sychronicznym wokół WD 0032-317, co oznacza, że jest cały czas zwrócony w jej kierunku tylko jedną stroną. To zaś powoduje olbrzymie różnice temperatur. Strona nocna brązowego karła jest aż o 6000 stopni Celsjusza chłodniejsza niż strona dzienna. Gdy układ ten po raz pierwszy zaobserwowano przed dwoma dziesięcioleciami, sądzono, że jest to układ podwójny dwóch białych karłów. Jednak gdy Hallakoun i jej zespół przyjrzeli się danym, zauważyli coś, co kazało im ponownie przyjrzeć się temu układowi. Mogli obserwować go rejestrując linie emisji pochodzące z dziennej strony brązowego karła. Dane były tak zaskakujące, że początkowo naukowcy sądzili, że nieprawidłowo je opracowali. Później zauważyli, że tak naprawdę obserwują układ składający się z białego karła, wokół którego krąży brązowy karzeł. Uczeni, którzy przed 20 laty zaobserwowali ten system, nie zauważyli tego, gdyż obserwowali nocną stronę brązowego karła. Autorzy odkrycia mówią, że przyda się ono do badania ultragorących Jowiszów, czyli olbrzymich planet krążących blisko swojej gwiazdy. Znalezienie takich planet nastręcza na tyle dużo trudności, że obecnie znamy pojedyncze planety tego typu. Dlatego też astronomowie nie od dzisiaj myślą o wykorzystaniu brązowych karłów krążących blisko gwiazd w roli modelu do badań ultragorących Jowiszów. Brązowe karły łatwiej jest obserwować. Układ WD 0032-317 rzuci też światło na ewolucję gwiazd. Na podstawie obecnie obowiązujących modeli naukowcy stwierdzili, że brązowy karzeł ma kilka miliardów lat. Z kolei niezwykle wysoka temperatura białego karła WD 0032-317 wskazuje, że istnieje on zaledwie od około miliona lat. Co więcej, ma on masę zaledwie 0,4 mas Słońca. Zgodnie z obowiązującymi teoriami, biały karzeł o tak małej masie nie może istnieć. Ewolucja gwiazdy do takiego stanu musiałaby bowiem trwać dłużej, niż istnieje wszechświat. Dlatego naukowcy sądzą, że brązowy karzeł przyspieszył ewolucję towarzyszącej mu gwiazdy. Hallakoun i jej zespół uważają, że przez pewien czas oba obiekty znajdowały się we wspólnej otoczce gazowej. Pojawiła się ona, gdy gwiazda macierzysta zmieniła się w czerwonego olbrzyma i pochłonęła brązowego karła. Z czasem wspólna otoczka została usunięta, w czym swój udział miał brązowy karzeł, co doprowadziło do szybszego pojawienia się białego karła. « powrót do artykułu
  4. Dzisiaj, 17 lat od wystrzelenia, pojazd STEREO-A po raz pierwszy przeleciał pomiędzy Ziemią a Słońcem, dokonując tym samym pierwszego przelotu w pobliżu naszej planety. Bliźniacza misja STEREO (Solar TErrestrial RElations Obserwatory) została wstrzelona 25 października 2006 roku.  Pierwszy leciał STEREO-A (Ahead), za nim zaś STEREO-B (Behind). Pojazdy ruszyły po podobnej do ziemskich orbitach wokół Słońca. Już w pierwszych latach misja osiągnęła swój główny cel – dostarczyła stereoskopowych obrazów Słońca. Natomiast pięć lat po wystrzeleniu, 6 lutego 2011 roku, separacja pomiędzy orbitami obu pojazdów wyniosła 180 stopni. Wówczas ludzkość po raz pierwszy zobaczyła Słońce jako kulę. Wcześniej byliśmy „uwiązani” na linii Ziemia-Słońce. W danym momencie widzieliśmy tylko jedną stronę Słońca. STEREO zerwała tę uwięź i zobaczyliśmy Słońce jako obiekt trójwymiarowy, mówi Lika Guhathakurta, pracująca przy misji STEREO. Misja osiągnęła wiele innych celów naukowych, aż w 2014 roku po planowanym resecie NASA utraciła kontakt z pojazdem STEREO-B. Jednak STEREO-A wciąż jest pod kontrolą i dzisiaj po raz pierwszy dogonił Ziemię w jej podróży wokół Słońca, dostarczając w międzyczasie danych niedostępnych z Ziemi. W ciągu ostatnich i kolejnych kilku tygodni kontrola naziemna będzie mogła postawić przed pojazdem nowe zadania. Pojazd dostarczy nowych obrazów stereoskopowych. Tym razy we współpracy z satelitami SOHO (Solar and Heliospheric Observatory) i SDO (Solar Dynamic Observatory). Co więcej, odległość pomiędzy STEREO-A a Ziemią będzie się zmieniała, co pozwoli na zoptymalizowanie obrazu. Naukowcy wykorzystają bliski przelot pojazdu do dokonania wielu różnych pomiarów, zidentyfikowania aktywnych magnetycznie regionów pod plamami słonecznymi. Mają nadzieję, że w ten sposób uda im się uzyskać trójwymiarowy obraz tych regionów. Przetestują też nową teorię dotyczącą pętli koronalnych, mówiącą, że nie są one tym, czym się dotychczas wydawały. Ostatnio pojawiła się hipoteza, że pętle koronalne to iluzje optyczne. Jeśli przyjrzymy im się z różnych punktów, powinno być to bardziej widoczne, mówi inny z naukowców, Terry Kucera. Naukowcy mają też nadzieję, że podczas przelotu STEREO-A w pobliżu Ziemi pojazd doświadczy koronalnego wyrzutu masy i dostarczy nam niedostępnych dotychczas informacji na jego temat. Tak wielkie nadzieje pokładane w przelocie w pobliżu Ziemi związane są z faktem, że ostatnio STEREO-A był równie blisko naszej planety wkrótce po wystrzeleniu. Jednak wówczaw mieliśmy do czynienia z minimum słonecznym, najniższą aktywnością naszej gwiazdy w jej 11-letnim cyklu. Obecnie zbliżamy się do maksimum słonecznego, które powinno mieć miejsce w 2025 roku. W tej fazie cyklu STEREO-A doświadczy zupełnie innego Słońca. To może nam dostarczyć olbrzymiej ilości nowych danych, wyjaśnia Guhathakurta. « powrót do artykułu
  5. Zespół Thiago Ferreiry z Uniwersytetu w São Paulo poinformował o odkryciu dwóch egzoplanet okrążających gwiazdę podobną do Słońca. Zwykle egzoplanety wykrywa się metodą tranzytu, badając zmiany jasności gwiazdy macierzystej, na tle której przechodzą. Tym razem odkrycia dokonano rejestrując zmiany prędkości radialnej gwiazdy spowodowane oddziaływaniem grawitacyjnym planet. Tą metodą odnaleziono dotychczas około 13% z ponad 5000 znanych nam egzoplanet. Naukowcy obserwowali gwiazdę HIP 104045. To gwiazda typu G5V, należy do ciągu głównego, a jej rozmiary i masa są zaledwie kilka procent większe od rozmiarów i masy Słońca. Temperatura powierzchni gwiazdy wynosi 5825 kelwinów, a jej wiek to 4,5 miliarda lat. Jest więc bardzo podobna do Słońca, gwiazdy typu G2V o temperaturze 5778 kelwinów i wieku ok. 4,6 miliarda lat. Planeta HIP 104045 c to super-Neptun położony blisko gwiazdy. Jej masa jest około 2-krotnie większa od masy Neptuna, znajduje się w odległości 0,92 jednostki astronomicznej od gwiazdy, którą obiega w ciągu 316 dni. Z kolei HIP 104045 b ma masę co najmniej połowy Jowisza, położona jest w odległości 3,46 j.a. od gwiazdy i obiega ją ciągu 2315 dni. Okazuje się, że gwiazda HIP 104045 jest podobna do Słońca również pod względem składu chemicznego, chociaż istnieją pewne różnice mogące wskazywać, że HIP 104045 mogła wchłonąć nieco materiału z planety skalistej. « powrót do artykułu
  6. Międzynarodowy zespół astronomów poinformował o odkryciu jednych z najgorętszych gwiazd we wszechświecie. Temperatura powierzchni każdej z 8 gwiazd wynosi ponad 100 000 stopni Celsjusza. Są więc one znacznie gorętsze niż Słońce. Autorzy badań przeanalizowali dane pochodzące z Southern African Large Telescope (SALT). Ten największy na Półkuli Południowej teleskop optyczny posiada heksagonalne zwierciadło o wymiarach 10x11 metrów. Naukowcy przeprowadzili przegląd danych pod kątem bogatych w hel karłów i odkryli niezwykle gorące białe karły oraz gwiazdy, które się wkrótce nimi staną. Temperatura powierzchni najbardziej gorącego z nich wynosi aż 180 000 stopni Celsjusza. Dla porównania, temperatura powierzchni Słońca to „zaledwie” 5500 stopni Celsjusza. Jedna ze zidentyfikowanych gwiazd znajduje się w centrum odkrytej właśnie mgławicy o średnicy 1 roku świetlnego. Dwie inne to gwiazdy zmienne. Wszystkie z gorących gwiazd znajdują sie na zaawansowanych etapach życia i zbliżają do końca etapu białch karłów. Ze względu na niezwykle wysoką temperaturę gwiazdy te są ponadstukrotnie jaśniejsze od Słońca, co jest niezwykłą cechą jak na białe karły. Białe karły to niewielkie gwiazdy, rozmiarów Ziemi, ale o olbrzymiej masie, porównywalnej z masą Słońca. To najbardziej gęste z gwiazd wciaż zawierających normalną materię. Z kolei gwiazdy, które mają stać się białymi karłami są od nich kilkukrotnie większe, szybko się kurczą i w ciągu kilku tysięcy lat zmienią się w białe karły. Gwiazdy o temperaturze powierzchni 100 000 stopni Celsjusza lub więcej są niezwykle rzadkie. Byliśmy bardzo zdziwieni, gdyż znaleźliśmy ich aż tak wiele. Nasze odkrycie pomoże w zrozumieniu ostatnich etapów ewolucji gwiazd, mówi Simon Jeffery z Armagh Observatory and Planetarium, który stał na czele grupy badawczej. « powrót do artykułu
  7. Już za tydzień, 26 września, przez całą noc będziemy mogli cieszyć się wyjątkowym widokiem Jowisza. Planeta znajdzie się w wielkiej opozycji, a to oznacza, że będzie doskonale widoczna. Wystarczy dobra lornetka by zaobserwować charakterystyczne barwne pasy planety i trzy z czterech księżyców galileuszowych. To największe księżyce Jowisza, które Galileusz odkrył w 1610 roku. Opozycja ma miejsce, gdy dwa ciała oglądane z Ziemi znajdują się naprzeciwko siebie. Najczęściej mówimy tutaj o opozycji obserwowanego ciała do Słońca. Opozycja Jowisza, a zatem sytuacja gdy Słońce i Jowisz znajdują się po przeciwnych sobie stronach Ziemi, zachodzi co 13 miesięcy. Jowisz wydaje się wówczas jaśniejszy i większy. Tym razem jednak opozycja będzie wyjątkowa, gdyż jednocześnie Jowisz będzie w peryhelium, czyli najbliższym Słońcu punkcie swojej orbity. Będziemy więc mieli do czynienia z wielką opozycją, zwaną też wielkim zbliżeniem, które ma miejsce co kilkanaście lat. Tym razem jednak Jowisz podczas opozycji znajdzie się najbliżej Ziemi od 70 lat. Opozycja Jowisza rzadko zbiega się z jego peryhelium. Dlatego warto poświęcić część nocy na obserwacje. Jowisz będzie jednym z najjaśniejszych – a może nawet najjaśniejszym – obiektem na nocnym niebie. Zaraz po Księżycu, rzecz jasna. Na kolejne wielkie zbliżenie Jowisza trzeba będzie poczekać do 2 października 2034 roku. Jednak wówczas planeta będzie o 700 000 kilometrów dalej od Ziemi niż przy obecnym wielkim zbliżeniu. Jowisz bardzo interesuje naukowców. Obecnie planeta jest badana przez misję Juno. Została ona wystrzelona w 2011 roku i dotarła do planety w roku 2016. Początkowo planowano, że cała misja potrwa 7 lat. Juno pracuje już 11 lat a niedawno NASA przedłużyła jej misję do roku 2025. Na rok 2024 zaplanowano wystrzelenie misji Europa, która ma badać jeden z księżyców galileuszowych – Europę. « powrót do artykułu
  8. Astronomowie po raz pierwszy zaobserwowali gwiazdę, która weszła w okres niezwykle niskiej aktywności, podobnej do Minimum Maundera, którego Słońce doświadczyło w drugiej połowie XVII wieku. Odkrycia dokonał zespół Anny Baum z Penn State University i Lehigh University, który przyjrzał się historycznym danym z obserwacji 59 gwiazd podobnych do Słońca. Naukowcy szukali oznak aktywności magnetycznej gwiazd. W czasie badań uczeni obserwowali linie absoprcyjne zjonizowanego wapnia. Szczególnie interesowały ich linie spektralne H i K, które są wrażliwe na siłę pola magnetycznego. Przy ich badaniu używa się wartości S, określającej aktywność magnetyczną gwiazdy. Im większy współczynnik S, tym bardziej aktywna gwiazda. Aktywność Słońca charakteryzują 11-letnie cykle. Wśród obserwowanych gwiazd cykle zauważono w przypadku 29 z nich, a w przypadku 14 udało się zmierzyć czas trwania cykli. Średni czas trwania cyklu wśród tych 14 gwiazd wynosił nieco poniżej 10 lat, co jest wartością podobną do 11-letniego cyklu słonecznego, mówi Baum. Uczona zauważa przy tym, że cykl jednej z gwiazd miał 4 lata długości, a w przypadku gwiazdy HD 166620 wynosił on aż 17 lat. Wynosił, gdyż gdzieś pomiędzy rokiem 1995 a 2004 cykl HD 166620 się zatrzymał. Naukowcy nie są pewni, kiedy do tego doszło, gdyż zjawisko to nastąpiło w czasie, gdy zmieniano instrumenty na jednym z teleskopów. Zespół Baum korzystał bowiem z danych Mount Wilson Observatory HK Project z lat 1966–1995, a później z danych projektu California Planet Search. W roku 2004 ten drugi projekt zyskał nowy udoskonalony spektrometr i wówczas stało się oczywiste, że HD 166620 stała się w międzyczasie wyjątkowo mało aktywna. Od ponad 10 lat aktywność tej gwiazdy utrzymuje się na bardzo niskim poziomie. Z niecierpliwością czekamy na moment, w którym jej aktywność znowu zacznie rosnąć, mówi Baum. To oczekiwanie może potrwać bardzo długo. Słoneczne Minimum Maundera trwało od roku 1645 do 1715, a w tym aktywność naszej gwiazdy była naprawdę niewielka. Dość wspomnieć, że w latach 1672–1699 zanotowano mniej niż 50 plam słonecznych, podczas gdy nawet podczas minimum 11-cyklu obserwuje się ich kilkanaście w ciągu roku, a podczas maksimum mamy do czynienia z ponad 100 plamami rocznie. Nie wiadomo dokładnie, co powoduje zjawiska podobne do Minimum Maundera. Przed kilku laty ukazała się praca naukowa, której autorzy dowodzili, że ma to związek z ruchem obrotowym gwiazdy. Dlatego też tak ważne jest zbadanie HD 166620 i odnotowanie momentu jej powrotu do normalnej aktywności. Wśród innych obserwowanych przez Baum gwiazd zauważono kilka interesujących zjawisk. Na przykład HD 101501 była nieaktywna magnetycznie w latach 1980–1990, a aktywność HD 4916 stopniowo spada, ale nie doszła do minimalnego poziomu. O ile mi wiadomo, HD 166620 jest pierwszą zaobserwowaną gwiazdą, która w oczywisty sposób weszła w okres minimalnej aktywności. « powrót do artykułu
  9. Astronomowie potwierdzili, że wokół Proximy Centauri, gwiazdy najbliższej Słońcu, krąży nieznana dotychczas planeta. To trzecia planeta Proximy Centauri. Z dotychczas zdobytych danych wynika, że jej masa to zaledwie 25% masy Ziemi, jest zatem jedną z najlżejszych znanych nam egzoplanet. Odkrycie to pokazuje, że najbliższy nam sąsiad może zawierać sporo interesujących światów. Znajdują się w odległości, z której możemy je badać, a w przyszłości eksplorować, mówi główny autor badań, João Faria z Instituto de Astrofísica e Ciências do Espaço w Portugalii. Nowa planeta, Proxima d, znajduje się w odległości około 4 milionów kilometrów od swojej gwiazdy. To 10-krotnie bliżej niż odległość pomiędzy Merkurym a Słońcem i niemal 40-krotnie bliżej niż między Słońcem a Ziemią. Mimo tak niewielkiej odległości Proxima d krąży się w ekosferze swojej gwiazdy, czyli takiej odległości, która pozwala na istnienie wody w stanie ciekłym na jej powierzchni. Czas obiegu nowo odkrytej planety wokół Proximy Centauri wynosi zaledwie 5 dni. Już wcześniej znaliśmy dwie planety na orbitach wokół Proximy Centauri. Proxima b ma masę porównywalną z masą Ziemi, znajduje się w ekosferze i obiega gwiazdę w ciągu 11 dni. Druga z nich to wciąż niepotwierdzona Proxima c, superziemia lub gazowy olbrzym o okresie orbitalnym wynoszącym aż 5 lat. Znajduje się poza ekosferą. Proxima b została odkryta w 2016 roku, a odkrycie ostatecznie potwierdzono w roku 2020. Proximę d zauważono po raz pierwszy roku 2019, a teraz potwierdzono, że obserwowane spadki jasności gwiazdy nie są spowodowane jej zmiennością, a wynikają z obecności planety. Proxima d to najlżejsza egzoplaneta odnaleziona metodą analizy prędkości radialnej. Technika ta polega na badaniu chybotania gwiazdy pod wpływem oddziaływania planety. To niezwykle ważne osiągnięcie. Pokazuje bowiem, że technika analizy prędkości kątowej może pomóc w odkryciu nieznanej dotychczas populacji lekkich planet podobnych do Ziemi. Spodziewany się, że to najbardziej rozpowszechniona we wszechświecie klasa planet i potencjalnie może na nich istnieć życie podobne do ziemskiego, stwierdził Pedro Figueira z Europejskiego Obserwatorium Południowego w Chile. Mimo, że Proxima Centauri znajduje się w odległości „zaledwie” 4 lat świetlnych od Ziemi, to obecnie możemy ją jedynie obserwować. Jednak warto przypomnieć, że w 2017 roku niemieccy naukowcy zaproponowali trwającą 150 lat misję do Alfa Centauri i Proximy b, a kilka miesięcy później pojawiła się informacja, że o wysłaniu pojazdu do Proximy Centauri myśli też NASA. Przed dwoma laty zaś naukowcy obliczyli, kiedy wysłane w latach 70. sondy Pioneer i Voyager dotrą do gwiazd innych niż Słońce. « powrót do artykułu
  10. Przed siedmioma miesiącami, 28 kwietnia 2021 o godzinie 9:33 czasu polskiego, Parker Solar Probe stał się pierwszym pojazdem, który dotarł do korony Słońca. Pozostał w niej przez 5 godzin. To pierwszy wysłane przez człowieka urządzenie, które osiągnęło zewnętrzne granice naszej gwiazdy. Wyniki przeprowadzonych wówczas badań zostały właśnie opublikowane na łamach Physical Review Letters. Misja PSP osiągnęła swój główny cel i rozpoczęła nową epokę w rozumieniu fizyki korony Słońca, mówi profesor Justin C. Kasper w University of Michigan, główny autor artykułu. Zewnętrzna krawędź Słońca jest wyznaczana przez powierzchnię krytyczną Alfvéna, miejscem poniżej którego Słońce i jego siły grawitacyjne i magnetyczne bezpośrednio kontrolują wiatr słoneczny. W 2018 roku NASA wystrzeliła Parker Solar Probę, której celem było osiągnięcie korony naszej gwiazdy. W kwietniu bieżącego roku PSP spędziła 5 godzin poniżej powierzchni krytycznej Alfvéna, w obszarze, gdzie ciśnienie i energia pola magnetycznego gwiazdy są silniejsze niż ciśnienie i energia cząstek przezeń emitowanych. Tym samym PSP stała się pierwszym pojazdem kosmicznym, który dotknął atmosfery naszej gwiazdy. Ku zdumieniu naukowców okazało się, że powierzchnia krytyczna Alfvéna jest pofałdowana. Dane sugerują, że największe z tych fałd to skutek oddziaływania tzw. pseudostreamera. O ile streamery to długotrwale istniejące struktury oddzielające od siebie regiony magnetyczne o przeciwnej polaryzacji w koronie słonecznego, to pseudostreamery są przejściowymi strukturami oddzielającymi regiony magnetyczne o tej samej polaryzacji. Obecnie nie jest jasne, dlaczego pseudostreamery miałyby wypychać powierzchnię krytyczną Alfvéna. Zauważono również, że poniżej powierzchni krytycznej tworzy się znacznie mniej fal Alfvéna niż powyżej tego punktu. Może to świadczyć, że nie powstają one w koronie. PSP zarejestrował też pewne dowody wskazujące na istnienie nieznanego mechanizmu fizycznego powodującego zwiększenie produkcji energii w koronie. Od dziesięcioleci obserwujemy Słońce i jego koronę. Wiemy, że zachodzą tam interesujące zjawiska fizyczne związane z ogrzewaniem i przyspieszaniem plazmy. Jednak nie znamy dokładnie tych procesów. Dzięki Parker Solar Probe wlatującemu w koronę zyskaliśmy długo oczekiwany wgląd w wewnętrzne procesy zachodzące w tym regionie, mówi Nour E. Raouafi, jeden z naukowców pracujących przy projekcie. Parker Solar Probe to urządzenie rozmiarów małego samochodu. Jego celem jest atmosfera Słońca znajdująca się w odległości około 6,5 miliona kilometrów od powierzchni naszej gwiazdy. Głównym celem misji jest zbadanie, w jaki sposób w koronie Słońca przemieszcza się energia i ciepło oraz odpowiedź na pytanie, co przyspiesza wiatr słoneczny. Naukowcy wiążą z misją olbrzymie nadzieje, licząc, że zrewolucjonizuje ona rozumienie Słońca, Układu Słonecznego i Ziemi. Pojazd będzie musiał przetrwać temperatury dochodząc do 1370 stopni Celsjusza. Pomoże mu w tym gruba na 11,5 centymetra osłona termiczna (Thermal Protection System) z kompozytu węglowego. Jej celem jest ochrona czterech instrumentów naukowych, które będą badały pola magnetyczne, plazmę, wysokoenergetyczne cząstki oraz obrazowały wiatr słoneczny. Instrumenty mają pracować w temperaturze pokojowej. TPS składa się z dwóch paneli węglowego kompozytu, pomiędzy którymi umieszczono 11,5 centymetra węglowej pianki. Ta strona osłony, która będzie zwrócona w kierunku Słońca została pokryta specjalną białą warstwą odbijającą promieniowanie cieplne. Osłona o średnicy 2,5 metra waży zaledwie 72,5 kilograma. Musiała być ona lekka, by poruszająca się z olbrzymią prędkością sonda mogła wejść na odpowiednią orbitę wokół naszej gwiazdy Co interesujące, Parker Solar Probe jest pierwszym pojazdem kosmicznym NASA nazwanym na cześć żyjącej osoby. W ten sposób uhonorowano profesora astrofizyki Eugene'a Parkera z University of Chicago. Zwykle misje NASA zyskują nową, oficjalną nazwę, po starcie i certyfikacji. Tym razem jest inaczej. W uznaniu zasług profesora Parkera na polu fizyki Słońca oraz dla podkreślenia, jak bardzo misja jest związana z prowadzonymi przez niego badaniami, zdecydowano, że oficjalna nazwa zostanie nadana przed startem. Aby nie ulec potężnej grawitacji Słońca, które stanowi przecież 99,8% masy Układu Słonecznego, PSP musi osiągnąć prędkość nie mniejszą niż 85 000 km/h. Nie jest to łatwe zadanie, dlatego też pojazd aż siedmiokrotnie skorzysta z asysty grawitacyjnej Wenus. W końcu znajdzie się w rekordowo małej odległości 6 milionów kilometrów od powierzchni naszej gwiazdy. Stanie się też najszybszym pojazdem w historii ludzkości. Jej prędkość wyniesie niemal 700 000 km/h. Dotychczas sonda pięciokrotnie skorzystała z asysty grawitacyjnej Wenus. Ostatni, 5. przelot, miał miejsce 16 października. W przyszłym roku PSP zbliży się do Słońca 4-krotnie. Kolejne spotkanie z Wenus zaplanowano na 21 sierpnia 2023 roku. Następnie 5-krotnie pojazd spotka się ze Słońcem. W końcu, po ostatniej asyście, która będzie miała miejsce 6 listopada 2024, PSP kilkukrotnie przeleci w odległości około 6 milionów kilometrów od powierzchni naszej gwiazdy. Ostatni raz minimalną odległość osiągnie 12 grudnia 2025. « powrót do artykułu
  11. Na EK Draconis zauważono gigantyczny koronalny wyrzut masy. Był on 10-krotnie potężniejszy niż tego typu zjawiska zaobserwowane na Słońcu. Może stanowić dla nas poważne ostrzeżenie, gdyż EK Draconis to gwiazda podobna do Słońca.  Silny koronalny wyrzut masyw kierunku Ziemi mógłby zakończyć się katastrofą dla naszej coraz bardziej stechnicyzowanej cywilizacji. Scenariusz takiej katastrofy opisywaliśmy już wcześniej. Koronalny wyrzut masy może mieć poważne skutki dla Ziemi i ludzi, mówi główny autor badań, Yuta Notsu z University of Colorado, Boulder. A teraz okazuje się, że takie zjawiska mogą być znacznie silniejsze niż sądziliśmy. Notsu i jego koledzy obserwowali EK Draconis, gwiazdę będącą młodszą wersją Słońca. Znajduje się ona 111 lat świetlnych od Ziemi, w Gwiazdozbiorze Smoka. W kwietniu ubiegłego roku zauważyli olbrzymi koronalny wyrzut masy. Taki wyrzut może – przynajmniej teoretycznie – mieć również miejsce na Słońcu, mówi uczony. Nasze badania pozwolą nam lepiej zrozumieć, jak przez miliardy lat koronalne wyrzuty masy wpływały na Ziemię czy Marsa". Koronalne wyrzuty masy to olbrzymie obłoki plazmy wyrzucane w przestrzeń międzyplanetarną. Są jednym z najważniejszych czynników kształtujących pogodę kosmiczną. Plazma pędzi z prędkością sięgającą tysięcy kilometrów na sekundę, a gdy dotrze do Ziemi zaburza magnetosferę, może uszkadzać satelity i sieci energetyczne. Koronalne wyrzuty masy często pojawiają się po rozbłyskach słonecznych. W 2019 roku Notsu i jego zespół opublikowali pracę naukową, w której poinformowali o zaobserwowaniu rozbłysków nawet setki razy potężniejszych niż te obserwowane na Słońcu. Wówczas zaczęli się zastanawiać, czy takim rozbłyskom mogą towarzyszyć równie silne koronalne wyrzuty masy. Obserwowane przez nas superrozbłyski były znacznie silniejsze niż znane nam ze Słońca. Podejrzewaliśmy więc, że mogą wiązać się ze znacznie potężniejszymi koronalnymi wyrzutami masy. Jednak do niedawna było to tylko przypuszczenie, przyznaje uczony. Żeby sprawdzić to przypuszczenie naukowcy zajęli się obserwacją DK Draconis. To jakby młodsza wersja Słońca. Gwiazda ta liczy sobie zaledwie 100 milionów lat. Wygląda tak, jak Słońce przed 4,5 miliardami lat. Uczeni obserwowali gwiazdę za pomocą Transiting Exoplanet Survey Satellite NASA i SEIMEI Telescope należącego do Uniwersytetu w Kioto. Piątego kwietnia ubiegłego roku zaobserwowali olbrzymi rozbłysk na DK Draconis. A około 30 minut później zauważyli początek koronalnego wyrzutu masy. Mogli obserwować tylko moment jego narodzin, ale już on robił wrażenie. Wyrzut był olbrzymi, a uwolniony z powierzchni gwiazdy materiał poruszał się z prędkością około 1,5 miliona kilometrów na godzinę. Notsu uspokaja jednak, że tego typu zjawiska zdarzają się niezwykle rzadko, a i tak znacznie częściej mają miejsce w przypadku gwiazd młodych. Ich badanie może nam sporo powiedzieć o historii Ziemi i Marsa. Koronalne wyrzuty masy mogły bowiem zadecydować o losie obu planet u zarania Układu Słonecznego. « powrót do artykułu
  12. Sonda, która leci „dotknąć” Słońca – Parker Solar Probe (PSP) – pobiła ostatnio dwa rekordy. Po raz kolejny stała się najszybciej poruszającym się obiektem skonstruowanym przez człowieka oraz obiektem, który znalazł się najbliżej Słońca. Obecnie sonda jest w połowie 10. bliskiego spotkania z naszą gwiazdą. NASA poinformowała, że 21 listopada pędząca z prędkością 586 864 km/h sonda znalazła się w odległości zaledwie 8,5 miliona kilometrów od naszej gwiazdy. Podczas kolejnych okrążeń PSP będzie coraz bardziej się rozpędzała i podlatywała coraz bliżej. Pojazd zaczyna oddalać się od Słońca, a zebrane podczas spotkania z nim dane będzie transmitował na Ziemię pomiędzy 23 grudnia a 9 stycznia. Parker Solar Probe to urządzenie rozmiarów małego samochodu. Jego celem jest atmosfera Słońca znajdująca się w odległości około 6,5 miliona kilometrów od powierzchni naszej gwiazdy. Głównym celem misji jest zbadanie, w jaki sposób w koronie Słońca przemieszcza się energia i ciepło oraz odpowiedź na pytanie, co przyspiesza wiatr słoneczny. Naukowcy wiążą z misją olbrzymie nadzieje, licząc, że zrewolucjonizuje ona rozumienie Słońca, Układu Słonecznego i Ziemi. Próbnik będzie musiał przetrwać temperatury dochodzące do 1370 stopni Celsjusza. Pomoże mu w tym gruba na 11,5 centymetra osłona termiczna (Thermal Protection System) z kompozytu węglowego. Jej celem jest ochrona czterech instrumentów naukowych, które będą badały pola magnetyczne, plazmę, wysokoenergetyczne cząstki oraz obrazowały wiatr słoneczny. Instrumenty mają pracować w temperaturze pokojowej. TPS składa się z dwóch paneli węglowego kompozytu, pomiędzy którymi umieszczono 11,5 centymetra węglowej pianki. Ta strona osłony, która będzie zwrócona w kierunku Słońca została pokryta specjalną białą warstwą odbijającą promieniowanie cieplne. Osłona o średnicy 2,5 metra waży zaledwie 72,5 kilograma. Aby nie ulec potężnej grawitacji Słońca, które stanowi przecież 99,8% masy Układu Słonecznego, PSP musi osiągnąć prędkość nie mniejszą niż 85 000 km/h. Nie jest to łatwe zadanie, dlatego też pojazd aż siedmiokrotnie skorzysta z asysty grawitacyjnej Wenus. W końcu znajdzie się w rekordowo małej odległości 6 milionów kilometrów od powierzchni naszej gwiazdy. Stanie się też najszybszym pojazdem w historii ludzkości. Jej prędkość wyniesie niemal 700 000 km/h. Dotychczas sonda pięciokrotnie skorzystała z asysty grawitacyjnej Wenus. Ostatni, 5. przelot, miał miejsce 16 października. W przyszłym roku PSP zbliży się do Słońca 4-krotnie. Kolejne spotkanie z Wenus zaplanowano na 21 sierpnia 2023 roku. Następnie 5-krotnie pojazd spotka się ze Słońcem. W końcu, po ostatniej asyście, która będzie miała miejsce 6 listopada 2024, PSP kilkukrotnie przeleci w odległości około 6 milionów kilometrów od powierzchni naszej gwiazdy. Ostatni raz minimalną odległość osiągnie 12 grudnia 2025. « powrót do artykułu
  13. Pedro Bernardinelli i Gary Bernstein z Univeristy of Pennsylvania odkryli gigantyczną kometę, która zmierza w stronę Słońca. Już w roku 2031 zbliży się ona na najmniejszą odległość od naszej gwiazdy. Kometa Bernardinelli-Bernstein, oficjalnie nazwana C/2014 UN271, została zauważona podczas analizy zdjęć z jednego z najdoskonalszych aparatów wykorzystywanych w astronomii. Amerykańscy naukowcy analizowali obrazy z lat 2013–2019 wykonane przez 570-megapikselowy Dark Energy Camera (DECam) umieszczony na Victor M. Blanco Telscope w Chile. Urządzenie jest wykorzystywane do monitorowania około 300 milionów galaktyk, a uzyskane dane służą do lepszego zrozumienia ciemnej materii. Uczeni, analizując około 80 000 obrazów, znaleźli na nich ponad 800 obiektów z Układu Słonecznego. Na 32 z nich zauważyli olbrzymią kometę, którą po raz pierwszy widać na zdjęciach z roku 2014. Opierając się na ilości światła odbijanego przez kometę Bernardinelli-Bernstein, jej odkrywcy stwierdzili, że ma ona średnicę 100–200 kilometrów. To około 10-krotnie więcej niż średnica przeciętnej komety. Masa olbrzyma jest zaś około 1000-krotnie większa niż masa przeciętnej komety. To zaś oznacza, że mamy do czynienia z największą kometą odkrytą w czasach współczesnych oraz z największym znanym nam obiektem pochodzącym z Obłoku Oorta. Na pierwszym z wykonanych zdjęć kometa znajduje się w odległości około 25 jednostek astronomicznych (j.a.) od Słońca, czyli mniej więcej w takiej odległości jak Neptun. Uczeni oceniają jednak, że swoją podróż rozpoczęła z Obłoku Oorta, znajdującego się około 40 000 j.a. od naszej gwiazdy. Obecnie kometa Bernardinelli-Bernstein znajduje się w odległości 20 j.a. od Słońca. Z ostatnich zdjęć wynika, że jej powierzchnia na tyle się rozgrzała, że pojawił się warkocz. Jego utworzenie się pozwala oficjalnie zakwalifikować obiekt jako kometę. Pomimo olbrzymich rozmiarów i masy, nie musimy przejmować się obecnością komety. Z wyliczeń jej trajektorii wynika, że podleci ona do Słońca nie bliżej niż na odległość 11 j.a. Dla przypomnienia – jednostka astronomiczna to średnia odległość pomiędzy Ziemią a Słońcem. Bernardinelli-Bernstein nie zbliży się więc do Ziemi bliżej niż Saturn. To na tyle duża odległość, że giganta najprawdopodobniej nie będzie można obserwować gołym okiem. « powrót do artykułu
  14. Bogata w tlen atmosfera utrzyma się na Ziemi jeszcze przez około miliard lat, twierdzi para naukowców z Toho University i NASA Nexus for Exoplanet Systems Science. Na łamach Nature Geoscience Kazumi Ozaki i Christopher Reinhard opisali wyniki swoich symulacji dotyczących przyszłości naszej planety. Wiemy, że z czasem tracące masę Słońce zacznie się powiększać, pochłonie Merkurego i Wenus, a jego zewnętrzne warstwy sięgną Ziemi. Jednak życie na naszej planecie przestanie istnieć na długo przed tym. Ozaki i Reinhard twierdzą, że za około 1 miliard lat Słońce stanie się się bardziej gorące niż obecnie. Będzie emitowało więcej energii przez co na Ziemi dojdzie do spadku zawartości dwutlenku węgla w atmosferze, który będzie absorbował tę energię i się rozpadał. Spalona zostanie też warstwa ozonowa. Spadek poziomu CO2 zaszkodzi roślinom, które będą przez to wytwarzały mniej tlenu. Po około 10 000 lat takiego procesu poziom dwutlenku węgla w atmosferze będzie tak niski, że życie roślinne przestanie istnieć. Bez produkujących tlen roślin nie przetrwają zaś zwierzęta i inne formy życia. Symulacja wykazała, że dojdzie również do wzrostu poziomu metanu, co dodatkowo zaszkodzi organizmom żywym potrzebującym tlenu. Zatem za około miliard lat na Ziemi pozostaną jedynie organizmy beztlenowe. Nasza planeta zacznie przypominać samą siebie z okresu przed pojawieniem się roślin i zwierząt. Jeśli Ozaki i Reinhard mają rację, to kres życia na Ziemi, a przynajmniej życia bardziej złożonego niż organizmy beztlenowe, nastąpi szybciej niż dotychczas zakładano. Przeprowadzone przez nich badania mogą pomóc w poszukiwaniu życia na innych planetach. « powrót do artykułu
  15. Testy żagla słonecznego oraz badania zewnętrznych warstw atmosfery Ziemi będą dwiema misjami, które zostaną zabrane „autostopem” przy okazji misji IMAP (Interstellar Mapping and Acceleration Probe). Urządzenia typu SmallSat trafią w przestrzeń kosmiczną dzięki temu, że IMAP nie wykorzysta całych możliwości rakiety nośnej. Ich wybór to jednocześnie początek realizacji przez NASA „naukowego autostopu” o nazwie RideShare. Wspomniane małe misje to GLIDE (Global Lyman-alpha Imagers of the Dynamic Exosphere), w ramach której badany będzie obszar, gdzie atmosfera styka się z przestrzenią kosmiczną, oraz Solar Cruiser, misja testowa żagla słonecznego. Zostaną one wystrzelone wraz z IMAP w 2025 roku. Sonda IMAP zostanie umieszczona w punkcie libracyjnym L1 i stamtąd będzie badała przyspieszenie cząstek pochodzących z heliosfery oraz interakcję wiatru słonecznego z lokalnym medium. Dane będą przesyłane na Ziemię w czasie rzeczywistym i posłużą do prognozowania pogody kosmicznej. W ramach projektu RideShare NASA ma zamiar wykorzystywać nadmiarową moc rakiet nośnych używanych przy dużych misjach do zabierania na ich pokład mniejszych urządzeń, na przykład typu SmallSat. To zwiększy możliwości badawcze i ułatwi organizowanie niewielkich misji naukowych. GLIDE ma uzupełnić nasze luki w wiedzy na temat egzosfery. Dysponujemy co prawda wykonanymi w ultrafiolecie zdjęciami tego obszaru, ale wszystkie one zostały zrobione spoza egzosfery. GLIDE ma obserwować całą egzosferę, dostarczając globalnych i spójnych danych na jej temat. Badania, w jaki sposób Słońce wpływa na najbardziej zewnętrzne warstwy atmosfery, pozwolą na zrozumienie wpływu naszej gwiazdy na systemy telekomunikacyjne oraz opracowanie technik, pozwalających na uniknięcie zakłóceń ze strony Słońca. Główną badaczką misji jest Lara Waldrop z University of Illinois at Urbana-Champaign, a budżet GLIDE wynosi 75 milionów USD. Z kolei Solar Cruiser to typowa misja testowa nowej technologii. W jej skład wchodzi żagiel słoneczny o powierzchni 1700 m2, a celem misji będzie wykazanie przydatności tego typu urządzeń do napędzania pojazdów z wykorzystaniem promieniowania słonecznego. Odpowiedzialnym za ten projekt jest Les Johnson z Marshall Space Flight Center, a budżet misji to 65 milionów USD. « powrót do artykułu
  16. Very Large Telescope sfotografował pierwszy znany nam pozasłoneczny układ planetarny, w którym wokół młodszej wersji Słońca krążą dwa gazowe olbrzymy. Układ TYC 8998-760-1 znajduje się w odległości 300 lat świetlnych od Ziemi w Gwiazdozbiorze Muchy. Układ jest rzeczywiście niezwykły. Jego centrum stanowi gwiazda o masie Słońca, która liczy sobie zaledwie 17 milionów lat. Bliższa ze sfotografowanych planet znajduje się w odległości 160 jednostek astronomicznych od gwiazdy i ma masę 14-krotnie większą od masy Jowisza. Gazowy olbrzym jest więc na granicy masy pomiędzy planetą a brązowym karłem. Drugą zaś z planet dzieli od gwiazdy macierzystej aż 320 jednostek astronomicznych. Masa tej planety jest 6-krotnie większa od masy Jowisza. Odległości dzielące obie planety od gwiazdy są zatem olbrzymie w porównaniu z Układem Słonecznym. Neptun, planeta najbardziej odległa od Słońca, znajduje się w odległości 30 j.a. Z kolei średnia odległość Plutona to 39 j.a. Odkrycie to daje nam pogląd na środowisko bardzo podobne do Układu Słonecznego, ale na znacznie wcześniejszym etapie rozwoju, mówi główny autor badań, doktorant Alexander Bohn z holenderskiego Uniwersytetu w Leiden. « powrót do artykułu
  17. Satelita Solar Orbiter przysłał właśnie fotografie z największym zbliżeniem Słońca, jakie kiedykolwiek wykonano. Widzimy na nich nawet niewielkie struktury, które naukowcy nazwali „ogniskami w lesie”. Satelita ma na pokładzie instrument skonstruowany przy pomocy Centrum Badań Kosmicznych PAN. Solar Orbiter to wspólna misja NASA i ESA. Satelita został wystrzelony 9 lutego bieżącego roku i ma przed 7–10 lat badań Słońce. Jego głównym zadaniem jest zbadanie sił napędzających wiatr Słoneczny. Na razie satelita podróżuje w kierunku wyznaczonej orbity. Usadowi się na niej dopiero za dwa lata. Gdy już to się stanie, dostarczy nam unikatowych zdjęć biegunów naszej gwiazdy. W ubiegłym miesiącu Solar Orbiter zakończył swoją pierwszą orbitę wokół Słońca i zbliżył się na odległość 77 milionów kilometrów do naszej gwiazdy. w tym czasie uruchomiono wszystkie 10 instrumentów służących do jej obserwacji. Na razie instrumenty były testowane, sprawdzano, czy prawidłowo pracują. Naukowcy nie spodziewają się żadnych odkryć na tym etapie misji. Satelita ma na pokładzie sześć urządzeń do obrazowania. Najbardziej interesujące zdjęcia nadeszły z Extreme Ultraviolet Imager (EURI). Urządzenie zarejestrowało liczne niewielkie jasne miejsca o rozmiarach od miliona do miliarda razy mniejszych od miejsc rozbłysków słonecznych. Zyskały one nazwę „ognisk w lesie”. Jak mówi główny badacz misji EUI, David Berghmans z belgijskiego Obserwatorium Królewskiego w Brukseli, są one „małymi kuzynami” rozbłysków. Te „ogniska” mogą być albo miniaturowymi wersjami rozbłysków, jakie widzimy z Ziemi, albo też mogą mieć związek z tzw. nanorozbłyskami. Coraz więcej specjalistów sądzi, że to nanoflary są odpowiedzialne za zadziwiająco wysoką temperaturę korony Słońca. Nie wiemy, dlaczego korona jest nawet 300-krotnie cieplejsza od powierzchni gwiazdy. Uczeni mają nadzieję, że Solar Orbiter rozwiąże i tę zagadkę. Jednym z najbliższych zadań satelity będzie próba zmierzenia temperatury „ognisk” za pomocą instrumentu Spectral Imaging of the Coronal Environment. Z kolei Solar and Heliospheric Imager (SoloHI) wysłał zdjęcia światła zodiakalnego. Pojawia się ono gdy światło słoneczne odbija się od cząstek pyłu. Wykonanie fotografii było ważnym testem, gdyż wykonanie zdjęć światła zodiakalnego wymagało, by instrument o bilion razy przyciemnił blask Słońca. Udany test dowiódł, że SoloHI jest gotowy do rejestrowania obrazów potrzebnych do badania wiatru słonecznego. Pozytywnie wypadły również testy pozostałych instrumentów Solar Orbitera. « powrót do artykułu
  18. W ciągu ostatnich dziesięcioleci naukowcy zauważyli, że do silnych trzęsień ziemi zwykle dochodzi grupowo. Wydarzenia te nie są przypadkowo rozłożone. To zaś sugeruje, że może istnieć jakaś wspólna globalna przyczyna takiego właśnie ich rozkładu. Autorzy badań opublikowanych właśnie w Scientific Reviews dostarczają pierwszego mocnego dowodu, że trzęsienia te są wywoływane przez... Słońce. Duże trzęsienia nie są równomiernie rozłożone. Istnieje pomiędzy nimi jakaś zależność. Postanowiliśmy więc sprawdzić hipotezę, czy może na nie wpływać aktywność słoneczna, mówi współautor badań, Giuseppe De Natale, dyrektor ds. badawczych w Narodowym Instytucie Geofizyki i Wulkanologii w Rzymie. Trzęsienia ziemi są zwykle powodowane przez ruch mas skalnych we wnętrzu Ziemi. Naukowcy nie od dzisiaj wiedzą, że niektóre z wielkich trzęsień zdarzają się w grupach. Dotychczas nie istnieje powszechnie zaakceptowane wyjaśnienie tego fenomenu. Autorzy najnowszych badań przyjrzeli się danym dotyczącym trzęsień ziemi i aktywności słonecznej z ostatnich 20 lat. Wykorzystali w tym celu przede wszystkim dane z satelity SOHO (Solar and Heliospheric Observatory). Znajduje się on w odległości 1,45 miliona kilometrów od Ziemi i rejestruje, ile materiału ze Słońca trafia na Ziemię. Uczeni porównali dane z SOHO z informacjami z ISC-GEM Global Instrumental Earthquake Catalogue, poszukując korelacji pomiędzy trzęsieniami ziemi a aktywnością słoneczną. Okazało się, że więcej silnych trzęsień ziemi ma miejsce wówczas, gdy rośnie liczba i prędkość protonów docierających ze Słońca. Co więcej, w ciągu 24 godzin po tym, jak liczba protonów osiągnie maksimum, dochodzi do największej liczby trzęsień ziemi o magnitudzie powyżej 5,6 stopnia. Korelacja ta jest niezwykle silna. Testy statystyczne wykazały, że prawdopodobieństwo, iż jest to przypadek, jest niezwykle małe, mniejsze niż 1:100 000, mówi De Natale. Po zauważeniu tej korelacji naukowcy zaczęli poszukiwać przyczyny tego zjawiska. Uważają, że Słońce powoduje trzęsienia ziemi wywołując efekt piezoelektryczny. Już wcześniejsze badania wykazały, że podany wysokiemu ciśnieniu kwarc, a powszechnie występuje on we wnętrzu naszej planety, może generować impuls elektryczny wywołany efektem piezoelektrycznym. De Natale i jego zespół sądzą, że wiele niewielkich impulsów elektrycznych pochodzących z kwarcu może prowadzić do destabilizacji szczelin w skorupie ziemskiej, które i bez nich są bliskie całkowitego pęknięcia. Warto tutaj zauważyć, że już wcześniej w czasie trzęsień ziemi notowano sygnatury wydarzeń elektromagnetycznych – takie jak zjawiska świetlne na niebie czy emisję fal radiowych. Niektórzy naukowcy sądzą, że zjawiska te są powodowane przez same trzęsienia ziemi. Jednak wiele badań wykazało istnienie anomalii elektromagnetycznych przed trzęsieniami, a nie po nich. Zatem prawdziwy związek pomiędzy trzęsieniami ziemi a tymi zjawiskami jest wciąż przedmiotem sporów. Badania grupy De Natale odwracają związek przyczynowo-skutkowy. Wskazują one bowiem, że anomalie elektromagnetyczne to nie skutek, a przyczyna trzęsień ziemi. Jak wyjaśniają autorzy badań, gdy protony ze Słońca trafiają w ziemską atmosferę powodują powstanie pola magnetycznego, które propaguje się na całą planetę. Pole to prowadzi do deformacji skompresowanego kwarcu we wnętrzu Ziemi, co wywołuje trzęsienia. To nie pierwszy raz, gdy naukowcy próbują powiązać Słońce z trzęsieniami ziemi. Takie stwierdzenia spotykają się ze sceptycyzmem sporej części naukowców. Niektórzy mówią o słabościach analizy statystycznej, inni mają wątpliwości co do doboru danych. Myślę, że obecnie uzyskane wyniki nie dowodzż żadnej istniejącej fizycznej zależności. Być może ona istnieje, ale dowodów tutaj brak, mówi Jeremy Thomas z NorthWest Research Associates. « powrót do artykułu
  19. Dzięki wykryciu neutrin pochodzących z jądra Słońca fizycy byli w stanie potwierdzić ostatni brakujący element opisu fuzji zachodzącej wewnątrz naszej gwiazdy. Potwierdzili tym samym obowiązujący od dziesięcioleci model teoretyczny przewidujący, że część energii słonecznej pochodzi z łańcucha reakcji, w którym udział mają atomy węgla i azotu. W procesie tym cztery protony łączą się w jądro helu. Dochodzi do uwolnienia dwóch neutrin, innych cząstek subatomowych i olbrzymich ilości energii. Ten cykl węglowo-azotowo-tlenowy (CNO) nie odgrywa większej roli w Słońcu, gdzie dzięki niemu powstaje mniej niż 1% energii. Uważa się jednak, że gdy gwiazda się starzeje, zużywa wodór i staje się czerwonym olbrzymem, wówczas rola cyklu CNO znacząco rośnie. O odkryciu poinformowali naukowcy pracujący przy włoskim eksperymencie Borexino. To wspaniałe, że udało się potwierdzić jedno z podstawowych założeń teorii dotyczącej gwiazd, mówi Marc Pinsonnealut z Ohio State University. Borexino już wcześniej jako pierwszy wykrył neutrina pochodzące z trzech różnych etapów reakcji zachodzącej w Słońcu, która odpowiada za produkcję większości energii naszej gwiazdy. Dzięki obecnemu odkryciu Borexino w pełni opisał dwa procesy zasilające Słońce, mówi rzecznik eksperymentu Gioacchino Branucci z Uniwersytetu w Mediolanie. Kończymy wielkim bum!, dodał Marco Pallavicini z Uniwersytetu w Genui. Może to być bowiem ostatnie odkrycie Borexino, któremu grozi zamknięcie z powodu ryzyka dla źródła wody pitnej. Odkrycie neutrin pochodzących z cyklu węglowo-azotowo-tlenowego nie tylko potwierdza teoretyczne modele procesów zachodzących w Słońcu, ale rzuca też światło na strukturę jego jądra, szczególnie zaś na koncentrację w nim metali. Tutaj trzeba podkreślić, że astrofizycy pod pojęciem „metal” rozumieją wszelkie pierwiastki o masie większej od wodoru i helu. Liczba neutrin zarejestrowanych przez Borexino wydaje się zgodna ze standardowym modelem przewidującym, że metaliczność jądra jest podobna do metaliczności powierzchni. To ważne spostrzeżenie, gdyż w ostatnim czasie pojawiało się coraz więcej badań kwestionujących taki model. Badania te sugerowały, że metaliczność jądra jest niższa niż powierzchni. A jako, że to skład pierwiastków decyduje o tempie przepływu energii z jądra, badania te sugerowały jednocześnie, że jądro jest nieco chłodniejsze niż sądzono. Jako, że proces, w którym powstają neutrina jest niezwykle wrażliwy na temperaturę, dane zarejestrowane przez Borexino wskazują raczej na starsze wartości temperatury, nie na te sugerowane przez nowe badania. « powrót do artykułu
  20. W piątek rano, 29 maja, na Słońcu doszło do najsilniejszego rozbłysku od października 2017 roku. Naukowcy klasyfikują rozbłyski słoneczne do trzech kategorii: C, M oraz X. Każda z nich oznacza rozbłysk 10-krotnie silniejszy od kategorii niższej. Wydarzenie z piątku należało do kategorii M. Być może oznacza ono, że Słońce wychodzi z cyklicznego minimum swojej aktywności. Jeśli rzeczywiście Słońce się budzi, to obserwujemy właśnie początek końca 24. Cyklu Słonecznego. Naukowcy liczą rozpoczęcie nowego cyklu od minium cyklu poprzedniego. Minimum zaś jest tym okresem, w którym na Słońcu pojawia się najmniej plam. Zatem o tym, że mieliśy do czynienia z minimum dowiadujemy się wówczas, gdy ono minęło. "Minie co najmniej sześć miesięcy, w czasie których będziemy obserwowali Słońce i liczyli plamy, zanim będziemy wiedzieli, kiedy miało miejsce minimum", napisali naukowcy z NASA, którzy pracują przy Sun Dynamics Observatory. To właśnie ono wykryło rozbłysk. "Jako, że minimum definiowane jest najmniejszą liczba plam w cyklu, musimy zaobserwować stały wzrost liczby plam, zanim stwierdzimy, kiedy było ich najmniej. To zaś oznacza, że słoneczne minimum jesteśmy w stanie rozpoznać 6 do 12 miesięcy po tym, gdy ono minęło", dodają uczeni. « powrót do artykułu
  21. Przed kilkoma godzinami z Przylądka Canaveral wystartował Solar Orbiter, europejsko-amerykańska sonda, która dostarczy pierwszych w historii zdjęć biegunów Słońca. Kilka godzin po starcie kontrolerzy misji z Europejskiego Centrum Operacji Kosmicznych w Darmstadt odebrali informację o udanym rozłożeniu paneli słonecznych. Pierwsze dwa dni po starcie miną sondzie na rozkładaniu instrumentów i anten, które będą komunikowały się z Ziemią i zbierały dane naukowe. Solar Orbiter znajduje się na unikatowej trajektorii, dzięki której zbada bieguny Słońca. W ramach misji pojazd 22 razy zbliży się do naszej gwiazdy. Ludzie zawsze wiedzieli, że Słońce jest ważne dla życia na Ziemi, obserwowali je i badali. Od dawna też wiemy, że może ono zniszczyć życie, jeśli znajdziemy się na linii potężnego rozbłysku. Pod koniec misji Solar Orbiter będziemy wiedzieli więcej niż kiedykolwiek wcześniej o siłach drzemiących w Słońcu i jego wpływie na naszą planetę, mówi Günther Hasinger, dyrektor ds. naukowych ESA. Przez najbliższe trzy miesiące Solar Orbiter będzie testował 10 swoich instrumentów naukowych, by upewnić się, że wszystko działa, jak należy. Zaś za dwa lata wejdzie na pierwszą orbitę, na której zostaną rozpoczęte właściwe badania Słońca. Sonda będzie pracowała w dwóch głównych trybach badawczych. Część instrumentów będzie odbierała dane z najbliższego otoczenia, zbierając informację o polach elektrycznych, magnetycznych, przepływających cząstkach czy falach. Z kolei instrumenty zdalne będą fotografowały Słońce, obrazowały jego atmosferę, ruch materii, zbierały informacje na temat gwiazdy. Podczas pierwszej fazy misji, lotu do Słońca, która potrwa do listopada 2021 roku, zbierane będą przede wszystkim dane z otoczenia sondy. Pozostałe instrumenty będą poddawane kalibracji, by przygotować je do pracy w pobliżu Słońca. W fazie tej Solar Orbiter trzykrotnie skorzysta z asysty grawitacyjnej. Dwa razy przeleci w pobliżu Wenus (grudzień 2020, sierpień 2021) i raz w pobliżu Ziemi (listopad 2021). Po przelocie w pobliżu naszej planety rozpocznie się podstawowa część misji. W 2022 roku sonda zaliczy pierwszy przelot w pobliżu Słońca, znajdzie się w odległości 1/3 j.a. od gwiazdy. Podczas kolejnych etapów misji pojazd będzie korzystał z asysty grawitacyjnej Wenus, by znaleźć się coraz bliżej i bliżej gwiazdy. « powrót do artykułu
  22. Osłony przeciwsłoneczne zadebiutowały w samochodach w 1924 roku w fordzie Model T. I od 100 lat praktycznie się nie zmieniły. Z jednej strony pomagają, zapobiegając oślepianiu kierowcy przez słońce, z drugiej zaś strony przeszkadzają, zasłaniając częściowo widok. Rozwiązaniem problemu może być osłona LCD zaprezentowana na targach CES. Bosch Virtual Visor to dzieło inżyniera Ryana Todda. Codziennie rano jedzie on na wschód, a z pracy wraca na zachód, zatem podczas każdej podróży słońce świeci mu prosto w twarz. Gdy podczas takiej podróży zastanawiał się nad kupnem nowego telewizora, uświadomił sobie, że o ile OLED generuje światło, to LCD światło blokuje. Pomyślał, że przydałoby się mieć w samochodzie LCD, który blokowałby oślepiające światło słońca. Trzy lata później Bosch zaprezentował panel LCD, który osłania oczy kierowcy przed słońcem i nie ogranicza przy tym widoczności. Nowatorska osłona przeciwsłoneczna to wyświetlacz LCD z wzorem w kształcie plastra miodu połączony z kamerą zwróconą w stronę kierowcy oraz elektronicznym modułem sterującym (ECU), na którym działa algorytm sztucznej inteligencji. Kamera filmuje twarz kierowcy, a obraz jest przesyłany do ECU. Tam algorytm rozpoznaje pozycję oczu, nosa, ust i czoła oraz bada rozkład cieni na twarzy. W ten sposób określa pozycję słońca w stosunku do głowy kierowcy. Jest więc w stanie określić, skąd słońce wpada do samochodu, niezależnie od kierunku jazdy. Na tej podstawie ECU odpowiednio ustawia osłonę przeciwsłoneczną i przyciemnia tylko taki jej fragment, by światło nie raziło kierowcy. Zastosowany algorytm świetnie sobie radzi z zadaniem i chroni kierowcę przed oślepieniem, a jednocześnie pozostawia 90% pola widzenia wolnym od zakłóceń. Całość pracuje w czasie rzeczywistym. Kierowca nie musi więc bez przerwy przesuwać osłony czy ruszać głową, by uniknąć oślepiania przez słońce. Dodatkową zaletą całego systemu jest fakt, że można go podłączyć do elementów już stosowanych w samochodach luksusowych. Na przykład w Cadillacu CT6 obserwująca kierowcę kamera wspomaga pracę półautonomicznego systemu sterowania. W takim przypadku wystarczy do oprogramowania dopisać odpowiedni kod, a w samochodzie zainstalować sam panel LCD. « powrót do artykułu
  23. Komórki tłuszczowe (adipocyty) mogą wyczuwać światło słoneczne. Jeśli jest za mało światła o konkretnej długości fali, rośnie ryzyko zespołu metabolicznego. Ponieważ spędzamy sporą część doby w pomieszczeniach, naukowców bardzo to niepokoi. Przez bardzo długi czas ludzkie ciała ewoluowały w kontakcie ze światłem słonecznym. Rozwinęły się u nas nawet światłoczułe opsyny. Obecnie jednak spędzamy sporą część doby w warunkach sztucznego oświetlenia, co nie zapewnia nam pełnego spektrum światła, jakie uzyskiwalibyśmy ze słońca - opowiada dr Richard Lang z Centrum Medycznego Szpitala Dziecięcego w Cincinnati. Lang dodaje, że idea penetracji światła głęboko do tkanek jest bardzo nowa, nawet dla wielu naukowców. Ja i inni odkryliśmy jednak opsyny zlokalizowane w wielu typach tkanek. W ramach ostatnich badań naukowcy wystawiali myszy na oddziaływanie niskiej temperatury (ok. 4°C). Wiedzieli, że by się ogrzać, tak jak ludzie gryzonie będą mieć dreszcze i wykorzystają termogenezę bezdrżeniową, czyli proces wytwarzania ciepła w brunatnej tkance tłuszczowej (ang. brown adipose tissue, BAT). Pogłębiona analiza wykazała, że proces rozgrzewania jest zaburzony zarówno pod nieobecność genu OPN3 (opsyny-3), jak i niebieskiego światła o długości fali rzędu 480 nanometrów; światło o tej długości stanowi część światła słonecznego, ale w świetle sztucznym występuje tylko w niewielkiej ilości. Podczas ekspozycji na światło, OPN3 stymuluje komórki białej tkanki tłuszczowej (ang. white adipose tissue, WAT) do lipolizy i uwalniania kwasów tłuszczowych do krwiobiegu. Są one wykorzystywane przez różne komórki do zasilania swojej aktywności. BAT spala je w procesie oksydacji, by wygenerować ciepło. Gdy wyhodowano myszy pozbawione genu OPN3, po umieszczeniu w niskiej temperaturze nie były one w stanie ogrzać się tak skutecznie, jak inne gryzonie. Co jednak zaskakujące, zespół zauważył, że nawet gdy zwierzęta miały prawidłowy gen, nie rozgrzewały się, gdy wystawiano je na oddziaływanie światła pozbawionego niebieskiego spektrum. Uzyskane dane skłoniły naukowców do wyciągnięcia wniosku, że światło słoneczne jest niezbędne dla normalnego metabolizmu energii, przynajmniej u myszy. Choć Amerykanie podejrzewają, że podobny światłozależny szlak metaboliczny występuje u ludzi, by to potwierdzić, muszą przeprowadzić serię kolejnych eksperymentów. Jeśli adipocytowy szlak światło-OPN3 istnieje także u ludzi, ma to potencjalnie olbrzymie implikacje dla ludzkiego zdrowia. Współczesny tryb życia wystawia nas na oddziaływanie nienaturalnych spektrów światła. Oznacza również ekspozycję na światło nocą, pracę zmianową i zespół nagłej zmiany strefy czasowej, jet-leg; wszystkie z nich mogą skutkować zaburzeniami metabolicznymi. [...] Niewykluczone, że niewystarczająca stymulacja szlaku światło-OPN3 z komórek tłuszczowych stanowi częściowe wytłumaczenie zaburzeń metabolicznych w krajach uprzemysłowionych, gdzie nienaturalne oświetlenie stało się normą. Lang podkreśla, że jeśli jego podejrzenia się potwierdzą, być może w przyszłości światłoterapia stanie się metodą, za pomocą której będzie się zapobiegać przekształceniu zespołu metabolicznego w cukrzycę. Stan zdrowia publicznego będzie zaś można poprawić, zastępując zwykłe oświetlenie wewnętrzne systemami oświetlania pełnym spektrum. Najpierw jednak trzeba odpowiedzieć na szereg pytań, m.in. ile światła słonecznego potrzeba, by wesprzeć zdrowy metabolizm i czy ludziom zmagającym się z otyłością może brakować w adipocytach działającego genu OPN3. « powrót do artykułu
  24. W krajach o niskim dochodzie gruźlica pozostaje jedną z najbardziej śmiertelnych chorób zakaźnych. Każdego roku umiera na nią ok. 1,6 mln osób. W nowym badaniu wykazano, że wystawione na oddziaływanie słońca boczniaki ostrygowate stanowią szybko dostępne źródło witaminy D, a ta sprawia, że ludzie lepiej reagują na leki przeciwgruźlicze (poprawia się ich odpowiedź immunologiczna). Przez pojawienie się lekoopornych szczepów gruźlica staje się trudniejsza do zwalczenia. Pilnie potrzeba nowych metod, które wesprą leki pierwszego rzutu. Źródło witaminy D w postaci grzybów jest idealne dla biednych krajów, ponieważ grzyby można bez problemu dystrybuować i administrować w bezpieczny, tani i łatwy do powtórzenia sposób - dowodzi dr TibebeSelassie Seyoum Keflie z Uniwersytetu Hohenheim. Wcześniejsze badania pokazały, że witamina D sprawia, że organizm wytwarza związki antydrobnoustrojowe zwalczające prątki gruźlicy. To pierwszy raz, gdy wykazano, że witamina D pozyskana z boczniaków wystawionych na oddziaływanie słońca może zostać wykorzystana w ramach terapii pomocniczej gruźlicy. Naukowcy snują plany, że w przyszłości można by edukować pacjentów z gruźlicą, by przed gotowaniem przez krótki czas "naświetlali" grzyby; świeże Pleurotus ostreatus prawie nie zawierają witaminy D, jednak na ekspozycję słoneczną reagują podobnie jak ludzkie ciało: produkcją tego cennego związku. W ramach studium 32-osobowej grupie chorych z gruźlicą z Etiopii przez 4 pierwsze miesiące leczenia co rano od poniedziałku do piątku podawano boczniakowy chleb zawierający 146 mikrogramów (5840 IU) witaminy D2. Uwzględniono też równoliczną grupę kontrolną. Na początku i pod koniec studium pobierano próbki krwi i plwociny. Po 4 miesiącach aż 96,9% pacjentów jedzących ten chleb zaklasyfikowano do najniższej kategorii nasilenia choroby (w skali od 1 do 5). Grupę eksperymentalną cechował też znacząco wyższy poziom witaminy D; ponad 35% osób nie miało już niedoboru. Oprócz tego naukowcy zaobserwowali, że w ciągu 4 miesięcy ludzie jedzący wzbogacony chleb wykazywali poprawę w zakresie odpowiedzi immunologicznej. Tylko w grupie interwencyjnej zaobserwowano wzrost poziomu interferonu gamma i katelicydyny (aktywnego peptydu LL-37). Zespół planuje badania na większej i bardziej zróżnicowanej grupie. Pracuje również nad alternatywnymi metodami suszenia grzybów, które pozwolą zmaksymalizować ilość witaminy D. « powrót do artykułu
  25. Potężna burza geomagnetyczna, która spowoduje wyłączenia prądu, awarie satelitów i urządzeń elektrycznych jest nie do uniknięcia. Prawdopodobnie tego typu wydarzenia mają miejsce częściej, niż nam się wydaje i, bazując na najnowszych badaniach, można przypuszczać, że takiego uderzenia ze strony Słońca możemy spodziewać się prawdopodobnie w ciągu najbliższych 100 lat. Nikt nie jest jednak w stanie powiedzieć, czy nastąpi ono w następnej dekadzie czy w następnym wieku. Jako, że w coraz większym stopniu jesteśmy uzależnieni od technologii, burze gaomagnetyczne – związane z aktywnością Słońca – są coraz groźniejsze dla naszej cywilizacji. Już przed 10 laty informowaliśmy o raporcie NASA i Narodowej Akademii Nauk opisującym katastrofalne skutki, jakie mogłaby przynieść burza geomagnetyczna, czyli gwałtowna zmiana pola magnetycznego Ziemi spowodowana koronalnymi wyrzutami masy na Słońcu. Autorzy raportu szacują, że same tylko Stany Zjednoczone poniosłyby w ciągu pierwszego roku straty rzędu 2 bilionów dolarów. Przywrócenie stanu sprzed katastrofy potrwałoby 4-10 lat. Mało prawdopodobne, by nawet tak potężne państwo było w stanie całkowicie się z niej podnieść, informowaliśmy. Dotychczas najsilniejszą znaną nam burzą geomagnetyczną była ta z września 1859 roku, kiedy to zorza polarna była widoczna na Karaibach, doszło do awarii sieci telegraficznych i pożarów. Sądzono jednak, że tak silne wydarzenia mają miejsce raz na 500 lat. Okazuje się jednak, że zdarzają się znacznie częściej. Jeffrey Love i jego koledzy ze Służby Geologicznej Stanów Zjednoczonych informują na łamach Space Weather o wynikach analizy, jakiej poddali New York Railroad Storm, burzę magnetyczną z 1921 roku. Tego typu wydarzenia ocenia się według skali Dst (disturbance short time). To skala oceny uśrednionej aktywności pola magnetycznego Ziemi. Jeśli ulega ono osłabieniu, a tak się dzieje przy koronalnych wyrzutach masy ze Słońca, pojawiają się na niej wartości ujemne. Wartość bazowa Dst Ziemi wynosi około -20 nanotesli (nT). Wartości poniżej -250 nT są uznawane za superburzę. Naukowcy dysponują bardzo ograniczonym zestawem danych dotyczących burzy z 1859 roku i na tej podstawie uznają, że w tym czasie Dst wynosiło pomiędzy -850 a -1050 nT. Tymczasem, jak wynika z badań Love'a i jego zespołu, Dst podczas burzy z 1921 roku wynosiło około -907 nT. Burza z roku 1921 mogła być bardziej intensywna niż ta z roku 1859. Zanim przeprowadziliśmy badania wiedziano, że było to gwałtowne zjawisko, jednak nie wiedziano, do jakiego stopnia. Pomiary historycznych burz geomagnetycznych nie są proste. Obecnie dysponujemy całym szeregiem instrumentów monitorujących, jednak nasza wiedza od wydarzeniach sprzed roku 1957, kiedy to pojawił się indeks Dst, jest bardzo uboga, a dane opierają się na informacjach z różnych magnetometrów rozmieszczonych na całym świecie. Przed badaniami Love'a cała nasza wiedza o burzy z 1921 roku była oparta na danych z jednego obserwatorium na Samoa. Jednak autorom najnowszej analizy udało się dotrzeć do notatek wykonanych przez specjalistów z Australii, Hiszpanii i Brazylii. Dzięki temu mogli ocenić intensywność tego wydarzenia bardziej precyzyjnie niż wcześniej. Ich wyliczenia są też bardziej precyzyjne niż te, dotyczące burzy z 1859 roku, które opierają się na daych z jednego magnetometru w Indiach. Burza z 1921 roku została nazwana New York Railroad Storm od pożaru kolejowej wieży kontrolnej w Nowym Jorku, który wówczas wybuchł. Obecnie wiemy, że dowody na związek pomiędzy burzą, a tym pożarem są słabe. Jednak wiemy również, że tego samego dnia wybuchły też trzy inne wielkie pożary, które dotychczas przeoczono. Do jednego z nich doszło w wyniku pojawienia się silnych prądów indukcyjnych w telegrafach na stacji kolejowej w Brewster w stanie Nowy Jork. Stacja całkowicie spłonęła. Drugi z pożarów zniszczył centralę telefoniczną w Karlstad w Szwecji, a trzeci wybuchł w Ontario. Wiemy też, że burza ta przebiegła dwuetapowo. W Karlstad operatorzy centrali najpierw informowali o awarii i dymie. A gdy dym się rozwiał, nastąpił nagły pożar okablowania. Autorzy najnowszych badań dotarli tez do zapisków wskazujących, że zorzę polarną obserwowano wówczas na Samoa, w Arizonie i w pobliżu Paryża, a do awarii sieci telegraficznych i telefonicznych doszło w Wielkiej Brytanii, Nowej Zelandii, Danii, Japonii, Brazylii i Kanadzie. Wszystko zaś wskazuje na to, że mieliśmy do czynienia z wydarzeniem o średniej intensywności, które w ciągu kilku godzin znacznie się wzmocniło, powodując liczne problemy. Gdyby taka burza jak w 1921 roku miała miejsce dzisiaj, doszłoby to zakłócenia pracy wielu systemów. Doświadczylibyśmy wyłączeń prądu, awarii sieci telekomunikacyjnych, być może utraty niektórych satelitów. Nie twierdzę, że byłby to koniec świata, ale doszłoby do zniszczeń na wielką skalę, stwierdza Love. « powrót do artykułu
×
×
  • Dodaj nową pozycję...