Znajdź zawartość
Wyświetlanie wyników dla tagów ' RIKEN' .
Znaleziono 2 wyniki
-
Jak wyliczyli fizycy jądrowi z japońskiego instytutu RIKEN, dodanie hiperonu Ξ (Ksi) do jądra helu zawierającego trzy nukleony, prowadzi do powstania czasowo stabilnego jądra. Obliczenia takie są bardzo ważne dla fizyków eksperymentalnych, którzy dzięki nim mogą prowadzić eksperymenty, które dostarczą nam nowej wiedzy o fizyce jądrowej czy budowie gwiazd neutronowych. Jądro atomowe zawiera nukleony – czyli protony i neutrony – z których każdy składa się z trzech kwarków. Istnieje sześć rodzajów kwarków: górny, dolny, dziwny, powabny, niski oraz wysoki. Jednak protony i neutrony składają się wyłącznie z kwarków górnych i dolnych. Fizycy jądrowi od dawna interesują się hiperjądrami. To jądra atomowe, w których co najmniej jeden nukleon został zastąpiony przez hiperon. Hiperony są, podobnie jak nukleony, barionami. Jednak w przeciwieństwie do nukleonów zawierają co najmniej jeden kwark dziwny. Mają one masę większa od nukleonów. Typowy czas życia hiperjądra wynosi 10-10 sekundy, a pierwsze hiperjądra zaobserwowali w 1952 roku Marian Danysz i Jerzy Pniewski z Uniwersytetu Warszawskiego. Hiperjądra dają cenny wgląd w budowę jądra. Standardowe jądra są definiowane przez liczbę protonów i neutronów. I to wszystko. Są dwuwymiarowe. Hiperony, dzięki kwarkom dziwnym, dają nam dodatkowy wymiar. To zaś pozwala nam lepiej przyjrzeć się jądru i siłom, które powodują, że jest ono stabilne, mówi Takumi Doi z RIKEN. Dotychczas większość badań skupia się na hiperjądrach z hiperonami Λ i z Σ− zawierającymi 1 kwark dziwny. Jednak możliwe są też jądra z hiperonami Ξ, które zawierają dwa kwarki dziwne. Dotychczas uzyskano 1 takie jądro. Zawiera ono hiperon Ξ i 14 nukleonów. Doi i jego koledzy wyliczają, zemogą istnieć też lżejsze hiperjądra zawierające hiperon Ξ. Z ich obliczeń wynika, że jądro zawierające do 3 nukleonów i 1 hiperon Ξ byłoby na tyle stabilne, że można by przeprowadzić różnego typu eksperymenty. To jednocześnie, jak wynika z obliczeń, najlżejsze możliwe jądro z hiperonem Ξ. Wyliczenia takie nie tylko przydadzą się fizykom eksperymentalnym, ale mogą nam sporo powiedzieć od gwiazdach neutronowych. W ich wnętrzu panują tak ekstremalne warunki, że mogą tam istnieć hiperjądra z hiperonami Ξ. Szczegóły badań zostały opisane na łamach Physical Review Letters. « powrót do artykułu
-
- hiperjądro
- hiperon
-
(i 2 więcej)
Oznaczone tagami:
-
Japońsko-amerykański zespół naukowy w Michigan State University i RIKEN Nishina Center odkrył osiem nowych izotopów fosforu, siarki, chloru, argonu, potasu, skandu i wapnia. To najcięższe ze znalezionych izotopów tych pierwiastków. Najbardziej interesującymi z izotopów, które właśnie odkryto dzięki Radioactive Isotope Beam Factory (RIBF) w RIKEN są wapń-59 i wapń-60. Jądro wapnia-60 zawiera 20 protonów i 40 neutronów. To o 12 więcej niż najcięższy ze znanych stabilnych izotopów wapnia, wapń-48. W przeciwieństwie do niego wapń-60 jest izotopem niestabilnym, rozpada się po kilku tysięcznych sekundy. Oleg Tarasov z Michigan State University mówi, że potwierdzenie istnienia pewnych izotopów danych pierwiastków pomaga w zrozumieniu sił atomowych. W sercu atomu protony i neutrony są utrzymywane razem przez siły atomowe, tworząc jądro atomu. Naukowcy wciąż badają, jaka kombinacja protonów i neutronów może przetrwać, nawet jeśli istnieje ona tylko przez ułamki sekund. Profesor Alexandra Gade zauważa, że nowe odkrycia wymuszą weryfikację niektórych modeli teoretycznych. Część z tych modeli przewiduje, że nie jest możliwe, by 20 protonów i 40 neutronów utrzymało się razem i stworzyło jądro Ca-60. Odkrycie wapnia-60 oznacza konieczność poszukania brakujących elementów w tych modelach. Podobnie odkrycie siarki-49 i chloru-52 oznacza konieczność zmiany modeli, wedle których izotopy takie nie mogą istnieć. W celu uzyskania wspomnianych izotopów naukowcy przyspieszyli atomy cynku i zderzyli je z berylem. Japoński RIBF to obecnie najpotężniejszy akcelerator służący do uzyskiwania egzotycznych izotopów. W przyszłości Facility for Rare Isotope Beams (FRIB) na Michigan State University, może pozwolić na uzyskanie wapnia-68, a może nawet Ca-70. « powrót do artykułu