Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów ' L2' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 2 wyniki

  1. Po trwającej miesiąc podróży Teleskop Kosmiczny Jamesa Webba (JWST) trafił właśnie na orbitę wokół punktu Lagrange'a L2. Przez pięć kolejnych miesięcy Webb będzie przygotowywany do pracy, a rozpoczęcie badań naukowych zaplanowano na czerwiec. Wcześniej opisywaliśmy budowę teleskopu i jego cele naukowe oraz dlaczego wybrano punkt L2 i dlaczego JWST będzie wokół niego krążył, a nie został umieszczony dokładnie w nim. Zwierciadła i instrumenty naukowe Webba jeszcze nie osiągnęły wymaganej stabilnej temperatury pracy. Muszą się jeszcze nieco chłodzić. A schładzać zaczęły się, i to bardzo szybko, gdy tylko teleskop rozwinął osłonę termiczną. Procesu tego nie pozostawiono jednak całkowicie naturze. Jest on ściśle kontrolowany poprzez umieszczenie w strategicznych miejscach teleskopu elektrycznie podgrzewanych pasków. Dzięki nim można było zarówno kontrolować równomierne kurczenie się całej struktury teleskopu, jak i upewnić się, że zabrana w Ziemi wilgoć odparuje i nie zamarznie na elementach optycznych czy czujnikach, co mogłoby negatywnie wpłynąć na prowadzone badania naukowe. Teraz, gdy Webb jest już w miejscu swojego przeznaczenia, centrum kontroli wykorzysta Fine Guidance Sensor do nakierowania teleskopu na jedną z jasnych gwiazd i sprawdzenie, czy obserwatorium jest w stanie wybrać taki cel, skupić się na nim i śledzić go w miarę, jak będzie podróżowało po swojej orbicie. Weryfikacja prawidłowej pracy zostanie przeprowadzona głównie za pomocą urządzenia NIRCam. Jednak, jako że zwierciadło główne teleskopu nie jest jeszcze odpowiednio ustawione, otrzymamy do 18 rozmazanych obrazów obserwowanej gwiazdy. Po potwierdzeniu, że Webb jest w stanie śledzić wybrany cel rozpocznie się żmudny kilkumiesięcznych proces ustawiania wszystkich 18 segmentów zwierciadła głównego tak, by całość działała jak jedno wielkie lustro. Poszczególne segmenty zwierciadła będą poruszały się z dokładnością liczoną w nanometrach, a cały proces zajmie trzy pełne miesiące. W międzyczasie zakończy się proces schładzania Webba i wszystkie urządzenia będą miały najniższą temperaturę możliwą do osiągnięcia w sposób pasywny. Osłona termiczna zapewni teleskopowi stabilną temperaturę pracy poniżej -223,15 stopni Celsjusza. Wówczas włączy się aktywny system chłodzenia, którego zadaniem jest zapewnienie optymalnej temperatury pracy jednemu z czterech instrumentów Webba, MIRI. Mid-Infrared Instrument to niezwykle czuła kamera i spektrograf działające w zakresie średniej podczerwieni (5–28 nm). Urządzenie jest tak czułe, że mogłoby dostrzec z Ziemi świeczkę zapaloną na jednym z księżyców Jowisza. By jednak pokazać pełnię swoich możliwości potrzebuje bardzo niskich temperatur. Dlatego też potrzebny był innowacyjny dwustopniowy system chłodzenia aktywnego, który zapewni MIRI temperaturę pracy wynoszącą -266,16 stopni Celsjusza. Od tej pory Webb będzie zdolny do uzyskania wysokiej jakości obrazów odległych gwiazd czy galaktyk. Piąty i szósty miesiąc od startu to czas kalibracji wszystkich czterech instrumentów naukowych i testowania różnych ich trybów pracy na reprezentatywnych celach w kosmosie. Sprawdzona zostanie też zdolność teleskopu do śledzenia „poruszających się” pobliskich obiektów, takich jak asteroidy, komety, planety czy księżyce w Układzie Słonecznym. Wkrótce potem NASA podzieli się wynikami swoich testów i pochwali pełnymi możliwościami teleskopu.   « powrót do artykułu
  2. Dzisiaj około godziny 20:00 czasu polskiego kontrola naziemna Teleskopu Webba wyda mu polecenie uruchomienia silników i wprowadzi JWST na orbitę wokół punku libracyjnego L2 (punkt Lagrange'a). Teleskop pozostanie w tym miejscu przez co najmniej 10 lat. Jednak już teraz wszystko wskazuje na to, że misję Webba będzie można wydłużyć. Obecnie Teleskop Kosmiczny Jamesa Webba (JWST) znajduje się w odległości mniej niż 6000 km od swojej docelowej orbity i porusza się w jej kierunku z prędkością ok. 200 metrów na sekundę. Najwyższa temperatura po jego gorącej stronie wynosi 55 stopni Celsjusza, a najniższa po stronie zimnej to -210 stopni. Punkt libracyjny (punkt Lagrange'a) to taki punkt w przestrzeni w układzie dwóch ciał powiązanych grawitacją, w którym trzecie ciało o pomijalnej masie może pozostawać w spoczynku względem obu ciał układu. Tutaj mówimy o układzie Słońce-Ziemia i o Teleskopie Webba, czyli trzecim ciele, tym o pomijalnej masie. W układzie takich trzech ciał występuje pięć punktów libracyjnych, oznaczonych od L1 do L5. Na linii Słońce-Ziemia znajdują się trzy z nich. L3 leży za Słońcem z punktu widzenia Ziemi, L1 znajduje się pomiędzy Słońcem a Ziemią, a L2 to miejsce za Ziemią z punktu widzenia Słońca. Zatem L2 był jedyny możliwym do osiągnięcia punktem, w którym osłona termiczna Webba mogła chronić jego zwierciadła i instrumenty naukowe jednocześnie przed ciepłem emitowanym i przez Słońce i przez Ziemię. Teleskop nie zostanie umieszczony w samym punkcie L2, a będzie wokół niego krążył po orbicie, której promień będzie większy od orbity Księżyca. Będzie on wynosił nawet 800 000 kilometrów, a przebycie pełnej orbity zajmie Webbowi pół roku. Dlaczego jednak nie ustawić Webba dokładnie w L2? Punkty libracyjne przemieszczają się wraz z ruchem Ziemi wokół Słońca. Webb musiałby za L2 podążać. L2, podobnie jak L1 i L3 są punktami metastabilnymi. Jeśli narysujemy siatkę przedstawiającą gradient zmian grawitacji w tych punktach, będzie ona miała kształt siodła. Tak jakby punkty te znajdowały się na krawędzi łączącej dwa wystające ponad nią górskie szczyty. W kierunku obu szczytów nasze punkty (L1, L2 i L3) są stabilne. Kulka pchnięta w kierunku jednego ze szczytów, wróci do punktu wyjścia. Jednak po bokach naszej krawędzi opadają doliny i w tych kierunkach punkty te są niestabilne. Znacznie łatwiejszą i bardziej efektywną alternatywą wobec umieszczenia Webba dokładnie w L2 jest wprowadzenie go na orbitę wokół tego punktu. Ma to i tę zaletę, że orbitujący Webb będzie równomiernie oświetlany przez Słońce, nie doświadczy zaćmienia Słońca przez Ziemię. A to bardzo ważne zarówno dla ładowania paneli słonecznych teleskopu jak i utrzymania równowagi termicznej, niezbędnej do precyzyjnej pracy jego instrumentów. Napęd Webbowi na orbicie L2 będą nadawały same oddziałujące siły grawitacyjne. Natomiast, jako, że L2 jest metastabilny, Webb będzie miał tendencję do opuszczenia jego orbity i zajęcia własnej orbity wokół Słońca. Dlatego też co mniej więcej trzy tygodnie odpali silniki, korygując swój kurs. W punktach L4 i L5 tego problemu nie ma. To punkty stabilne, a nasza siatka ze zmianami grawitacji ma tam kształt miski. Zatem obiekty krążące wokół tych punktów, samodzielnie pozostają na orbitach. Dlatego też znamy asteroidy krążące wokół L4 i L5, ale nie wokół pozostałych punktów libracyjnych. Jako że Webb będzie musiał korygować swoją orbitę, czas jego misji jest ograniczony ilością paliwa. Przewidziano, że teleskop będzie pracował przez 10 lat. Już teraz jednak wiemy, że prawdopodobnie uda się ten czas wydłużyć. A to dzięki niezwykle precyzyjnemu wystrzeleniu rakiety Ariane, które wyniosła go w przestrzeń kosmiczna. Ta precyzja spowodowała, że podczas dwóch korekt kursu, jakie Webb wykonał, zużyto mniej paliwa niż planowano. Pozostało go więc na tyle dużo, że prawdopodobnie teleskop pozostanie w L2 znacznie dłużej niż planowano. Musimy bowiem pamiętać, że nie jest planowana żadna misja serwisowa do teleskopu. Więc nie będzie można uzupełnić jego paliwa. Umieszczenie pojazdu w punkcie L2 to dość proste zadanie. Pozostaje więc pytanie, po co były zużywające cenne paliwo korekty kursu? Odpowiedź tkwi w samej architekturze Webba. Teleskop musiał dwukrotnie w czasie lotu odpalić silniki, gdyż rakieta Ariane nadała mu na tyle rozpędu, by mógł przebyć odległość dzielącą go od L2, jednak zbyt mało energii, by mógł całkowicie uciec z pola grawitacyjnego Ziemi. Co prawda tę dodatkową energię Ariane mogłaby mu nadać podczas startu, jednak istniało wówczas ryzyko, że będzie jej nieco za dużo i Webb będzie poruszał się zbyt szybko, by wejść na orbitę wokół L2. Mógłby ją minąć. Problem ten można by rozwiązać wyhamowując teleskop. Jednak manewr hamowania za pomocą silników Webba zużyłby więcej paliwa, niż na korekty kursu. Jednak nie to było głównym problemem, a fakt, że silniki Webba są umieszczone po jego gorącej stronie, tej zwróconej w kierunku Słońce. Zatem Webb, żeby wyhamować, musiałby wykonać obrót o 180 stopni wokół własnej osi. Wówczas jego optyka i instrumenty naukowe, które wymagają bardzo niskich temperatur, zostałyby wystawione na bezpośrednie oddziaływanie Słońca, doszłoby do ich rozgrzania i... roztopienia kleju, którym są spojone. Gdy Webb znajdzie się na swojej orbicie rozpocznie pięciomiesięczny proces testowania i kalibrowania zwierciadeł oraz instrumentów naukowych. Naukowcy etap misji rozpocznie się w czerwcu.   « powrót do artykułu
×
×
  • Dodaj nową pozycję...