Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Specjaliści IBM-a dokonali niezwykle ważnego kroku na drodze do zastąpienia połączeń elektrycznych optycznymi w układzie scalonym. Inżynierowie zaprezentowali nanofotoniczny fotodetektor lawinowy. To najszybsze tego typu urządzenie, które umożliwi zbudowanie eksaflopowych komputerów.

Urządzenie korzysta z obserwowanego w germanie "efektu lawiny". Podobnie jak lawina rozpoczyna się od ruchu niewielkiej ilości śniegu, tak w tym przypadku wykorzystywany jest fakt, że początkowo impuls świetlny (foton) uwalnia niewiele nośników ładunku (elektron), ale one uwalniają kolejne, te - następne i w efekcie otrzymujemy "lawinę" ładunków. Konwencjonalne fotodetektory lawinowe nie są w stanie wykryć szybkich sygnałów optycznych.

Urządzenie IBM-a jest w stanie odbierać z prędkością 40 Gbps sygnały optyczne i jednocześnie pomnażać je dziesięciokrotnie. Co więcej, do pracy urządzenie wymaga zasilania rzędu 1,5 wolta, czyli 20 razy mniej, niż standardowe fotodetektory lawinowe. Innymi słowy, wiele urządzeń IBM-a można zasilić z pojedynczej baterii AA. Tymczasem obecnie dostępne podobne urządzenia potrzebują źródeł zasilania o napięciu 20-30V.

Tak znaczące ulepszenie wydajności to wynik manipulowania w skali kilkudziesięciu atomów właściwościami elektrycznymi i optycznymi. Dzięki temu osiągnęliśmy wydajność przekraczającą zwykłe fizyczne możliwości. Te niewielkie urządzenia są w stanie wykryć niezwykle słabe impulsy światła i zwielokrotnić je w niespotykanym dotychczas zakresie, dodając przy tym bardzo mało niechcianego szumu - mówi doktor Solomon Assefa.

W fotodetektorze IBM-a zwielokrotnienie zachodzi na przestrzeni zaledwie kilkudziesięciu nanometrów. Dzięki małym rozmiarom szum powodowany zwielokrotnieniem sygnału zostaje zredukowany o 50-70 procent w porównaniu ze standardowym fotodetektorem lawinowym.

Dodatkowa zaleta produktu IBM-a jest taka, iż powstał z krzemu i germanu przy użyciu standardowych technik wykorzystywanych w przemyśle półprzewodnikowym.

 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Dyrektor wykonawczy IBM-a Arvind Krishna poinformował, że jego firma przestanie rekrutować ludzi na stanowiska, na których w najbliższych latach mogą być oni zastąpieni przez sztuczną inteligencję. W wywiadzie dla Bloomberga menedżer stwierdził, że rekrutacja na stanowiska biurowe, na przykład w dziale HR, może zostać znacznie spowolniona lub całkowicie wstrzymana. Obecnie na tego typu stanowiskach – gdzie nie ma kontaktu z klientem – IBM zatrudnia 26 000 osób.
      Zdaniem Krishny, w ciągu najbliższych 5 lat sztuczna inteligencja może zastąpić 30% z nich. To oznacza, że w samym tylko IBM-ie maszyny zastąpią 7800 osób. Stąd też pomysł na spowolnienie lub wstrzymanie rekrutacji, dzięki czemu uniknie się zwalniania ludzi.
      Krishna mówi, że takie zadania, jak pisanie listów referencyjnych czy przesuwanie pracowników pomiędzy poszczególnymi wydziałami, prawdopodobnie zostaną całkowicie zautomatyzowane. Inne zaś, takie jak analizy produktywności czy struktury zatrudnienia, ludzie będą wykonywali jeszcze przez kolejną dekadę.
      Błękitny Gigant zatrudnia obecnie około 260 000 osób i wciąż zwiększa zatrudnienie. Potrzebuje pracowników przede wszystkim do rozwoju oprogramowania oraz osób pracujących z klientem. Na początku bieżącego roku firma ogłosiła, że planuje zwolnienia, które w sumie obejmą 5000 osób, ale jednocześnie w I kwartale zatrudniła 7000 osób.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Fizyk James Franson z University of Maryland opublikował w recenzowanym Journal of Physics artykuł, w którym twierdzi, że prędkość światła w próżni jest mniejsza niż sądzimy. Obecnie przyjmuje się, że w światło w próżni podróżuje ze stałą prędkością wynoszącą 299.792.458 metrów na sekundę. To niezwykle ważna wartość w nauce, gdyż odnosimy do niej wiele pomiarów dokonywanych w przestrzeni kosmicznej.
      Tymczasem Franson, opierając się na obserwacjach dotyczących supernowej SN 1987A uważa, że światło może podróżować wolniej.
      Jak wiadomo, z eksplozji SN 1987A dotarły do nas neutrina i fotony. Neutrina przybyły o kilka godzin wcześniej. Dotychczas wyjaśniano to faktem, że do emisji neutrin mogło dojść wcześniej, ponadto mają one ułatwione zadanie, gdyż cała przestrzeń jest praktycznie dla nich przezroczysta. Jednak Franson zastanawia się, czy światło nie przybyło później po prostu dlatego, że porusza się coraz wolniej. Do spowolnienia może, jego zdaniem, dochodzić wskutek zjawiska polaryzacji próżni. Wówczas to foton, na bardzo krótki czas, rozdziela się na pozyton i elektron, które ponownie łączą się w foton. Zmiana fotonu w parę cząstek i ich ponowna rekombinacja mogą, jak sądzi uczony, wywoływać zmiany w oddziaływaniu grawitacyjnym pomiędzy parami cząstek i przyczyniać się do spowolnienia ich ruchu. To spowolnienie jest niemal niezauważalne, jednak gdy w grę wchodzą olbrzymie odległości, liczone w setkach tysięcy lat świetlnych – a tak było w przypadku SN 1987A – do polaryzacji próżni może dojść wiele razy. Na tyle dużo, by opóźnić fotony o wspomniane kilka godzin.
      Jeśli Franson ma rację, to różnica taka będzie tym większa, im dalej od Ziemi położony jest badany obiekt. Na przykład w przypadku galaktyki Messier 81 znajdującej się od nas w odległości 12 milionów lat świetlnych światło może przybyć o 2 tygodnie później niż wynika z obecnych obliczeń.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Prace międzynarodowej grupy badawczej, na czele której stali specjaliści ze Skołkowskiego Instytutu Nauki i Technologii (Skoltech) w Moskwie oraz IBM-a zaowocowały powstaniem energooszczędnego superszybkiego przełącznika optycznego. Urządzenie nie wymaga chłodzenia, a jednocześnie jest ponad 100-krotnie szybsze od najszybszych współczesnych tranzystorów.
      Tym, co czyni to urządzenie tak bardzo energooszczędnym jest fakt, że do przełączenia stanu potrzebuje zaledwie kilku fotonów, mówi główny autor badań Anton Zasiedatieliew. W laboratorium udało się nam go przełączać za pomocą pojedynczego fotonu. I to w temperaturze pokojowej. Jednak minie sporo czasu, zanim taka technologia będzie mogła trafić do procesorów optycznych, dodaje profesor Pawlos Lagudakis.
      Możliwość przełączania za pomocą pojedynczego fotonu oznacza, że układ jest niezwykle energooszczędny i zostało niewiele miejsca na jego dalsze udoskonalenie. Oczywiście musimy przy tym pamiętać, że obecnie działa to jedynie w wyspecjalizowanym laboratorium. Jednak tak właśnie zaczyna się wielu historia technologii, które w końcu trafiają do codziennego użytku. Większość współczesnych tranzystorów elektrycznych potrzebuje dziesiątki razy więcej energii, by się przełączyć, a te, którym wystarczy pojedynczy elektron, działają znacznie wolniej niż zademonstrowany właśnie przełącznik optyczny.
      Jednak szybkość i energooszczędność to nie jedyne zalety nowej technologii. Równie ważny jest fakt, że przełącznik działa w temperaturze pokojowej i nie wymaga chłodzenia. Tymczasem systemy chłodzenia potrzebne współczesnym komputerom nie tylko wpływają na koszty samego sprzętu, ale też znacząco zwiększają zużycie energii koniecznej do ich zasilania.
      Urządzenie składa się z dwóch laserów. Bardzo słaby promień lasera kontrolnego jest używany do przełączania stanu drugiego jaśniejszego z laserów. Do przełączenia wystarczy kilka fotonów, stąd wynika wysoka efektywność całości. Przełączanie odbywa się wewnątrz mikrownęki. To 35-nanometrowej grubości organiczny polimer półprzewodzący zamknięty pomiędzy dwiema nieorganicznymi warstwami o wysokim współczynniku odbicia. Mikrownęka zbudowana jest w taki sposób, by jak najdłużej więzić nadchodzące światło, prowadząc w ten sposób do jego sprzężenia z materiałem wnęki.
      Oddziaływanie światła z materią to podstawa działania nowego urządzenia. Gdy fotony sprzęgają się z parami dziura-elektron – tworzącymi kwazicząstkę o nazwie ekscyton – pojawiają się kwazicząstki ekscyton-polaryton. Gdy silniejszy z laserów oświetla przełącznik powstają tysiące identycznych krótko żyjących kwazicząstek tworzących kondensat Bosego-Einsteina, w którym kodowany jest stan urządzenia „0” lub „1”.
      Najpierw za pomocą silniejszego lasera we wnęce tworzone są kwazicząstki o energiach większych niż energia podstawowa. Przełącznik znajduje się w stanie „0” Do przełączenia potrzebny jest laser słabszy, za pomocą którego tworzona jest grupa kwazicząstek o energii podstawowej. Ich pojawienie się wywołuje lawinowy proces przełączania się pozostałych kwazicząstek do stanu podstawowego. W ten sposób uzyskujemy stan „1”. Czas przełączania liczony jest w femtosekundach, dzięki czemu przełącznik jest ponad 100-krotnie szybszy od współczesnych tranzystorów.
      Naukowcy użyli kilku sztuczek, by utrzymać zapotrzebowanie na energię na jak najniższym poziomie przy jednoczesnym zmaksymalizowaniu pracy urządzenia. W efektywnym przełączaniu pomagają wibracje molekuł półprzewodzącego polimeru. Konieczne było precyzyjne dopasowanie częstotliwości pracy laserów, stanu kondensatu i energii wibracji molekuł polimeru.
      Przed nami jeszcze sporo pracy. Musimy zmniejszyć całkowite zapotrzebowania urządzenia na energię. Obecnie jest ono zdominowane przez silniejszy z laserów, który utrzymuje przełącznik w gotowości. Prawdopodobnie trzeba będzie wykorzystać tutaj perowskitowego superkryształu, z którym wcześniej eksperymentowaliśmy. Są one doskonałymi kandydatami to zbudowania naszego przełącznika, gdyż zapewniają bardzo silną interakcję światła z materią, stwierdzają autorzy badań.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcy z Uniwersytetu Kalifornijskiego w San Diego przygotowali raport o konsumpcji informacji przez Amerykanów w 2008 roku [PDF]. Wynika z niego, że mieszkańcy USA w ciągu 12 miesięcy "użyli" 3,6 zettabajtów (1021, bilion gigabajtów) informacji i niemal 11 biliardów wyrazów. Oznacza to, że przeciętny mieszkaniec tego kraju "konsumował" każdego dnia 34 gigabajty informacji i 100.500 wyrazów. Dane takie uzyskano na podstawie analizy ponad 20 źrodeł informacji. Od książek i gazet po przenośne gry komputerowe, radio satelitarne i internetowy przekaz wideo. W badaniach nie uwzględniono informacji "konsumowanej" w czasie pracy.
      Uczeni zdefiniowali "informację" jako przepływ danych docierających do ludzi i policzyli bajty, słowa oraz czas spędzany na konsumpcji.
      Najbardziej rozpowszechnionym sposobem korzystania z informacji jest przekaz obrazkowy. Około 2 zettabajtów pozyskano z gier wideo, a 1,3 ZiB z telewizji. Widać tutaj wyraźny wzrost w porównaniu z poprzednimi badaniami z roku 2000 i 2003.
      Uczeni zauważają, że liczba godzin spędzanych na konsumpcji informacji rośnie w latach 1980-2008 w tempie 2,8% rocznie. Przed 28 laty przeciętny Amerykanin "konsumował" informacje średnio przez 7,4 godziny na dobę. Obecnie jest to 11,8 godziny.
      Wśród źródeł informacji nadal dominuje radio i telewizja. Naukowcy wyliczyli, że 60% czasu konsumpcji jest związane właśnie z tymi mediami. Amerykanie spędzają przy źródłach nie związanych z komputerem ponad 75% czasu związanego z konsumpcją informacji.
      Jednocześnie jednak widać, że komputery zmieniają sposób przyswajania informacji. Przed ich pojawieniem się jedynym interaktywnym źródłem informacji był telefon. Dzięki komputerom 33% słów i ponad 50% bitów jest odbieranych w sposób interaktywny. Komputery przyczyniły się też do zwiększenia, zagrożonego przez telewizję, czytelnictwa, gdyż słowo pisane jest głównym sposobem komunikacji z maszyną.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Fototerapia była znana już w starożytnym Egipcie. W pracach Hipokratesa można doszukać się wzmianek na temat leczniczych właściwości światła słonecznego. Dziś leczenie światłem można skutecznie praktykować w gabinetach odnowy biologicznej, salonach masażu czy w zaciszu własnego domu. Jakie są właściwości lampy Bioptron?
      Światło źródłem zdrowia
      Praktyki z udziałem światła słonecznego stosowane w starożytnym Egipcie nie mają co prawda potwierdzenia w formie medycznych dowodów naukowych. Jednak wówczas korzystne działanie promieni słonecznych uznawano za niepodważalny fakt. Dzięki osiągnięciom współczesnej medycyny wiadomo już, że organizm jest w stanie zamienić światło w energię elektrochemiczną. Pozyskana energia aktywuje pasmo reakcji biochemicznych w komórkach, a skutkiem tych zmian jest efekt terapeutyczny.
      Lata badań i spektakularne rezultaty
      Warto nadmienić, że badania nad pozytywnym wpływem promieni słonecznych na organizm od dziesięcioleci prowadzone są na całym świecie. Naukowcy zafascynowani możliwościami światła spolaryzowanego od lat pochylają się nad kluczowymi dla ludzkiego zdrowia projektami.
      Potrzebowano ponad 20 lat szczegółowych badań i doświadczeń, by stworzyć lampę Bioptron. Polichromatyczne światło spolaryzowane stało się głównym obiektem naukowców, którzy po latach badań opracowali rewolucyjny przyrząd, zdolny do leczenia licznych schorzeń. Światło pochodzące z lampy poprawia mikrokrążenie w tkankach, aktywując je do procesów odpornościowych. Urządzenie okazało się przełomowe, co potwierdzają specjaliści licznych gabinetów, w których jest stosowane.
      Zastosowanie lampy Bioptron
      Za główne przeznaczenie lampy uważa się leczenie zmian skórnych i wspomaganie procesu gojenia się ran. Urządzenie bardzo dobrze sprawdzi się także w leczeniu chorób reumatologicznych oraz przy dolegliwościach bólowych kręgosłupa. Lata badań wykazały ponadto, że stosowanie fototerapii przynosi doskonałe rezultaty przeciwdziałając starzeniu się skóry. Lampa szybko znalazła zatem zastosowanie w gabinetach kosmetycznych i klinikach medycyny estetycznej.
      Podkreślając dobroczynne działanie lampy na zmiany skórne, warto skupić się wokół takich schorzeń, jak opryszczka, łuszczyca, atopowe zapalenie skóry czy trądzik młodzieńczy. Regularne stosowanie lampy Bioptron skutecznie regeneruje tkanki podskórne, pomagając wyleczyć odleżyny oraz owrzodzenia.
      Za imponującymi efektami opowiadają się także lekarze specjaliści. Lampa doskonale wspomaga leczenie tkanek miękkich i stanów zapalnych, więc chętnie korzystają z niej ortopedzi oraz reumatolodzy. Polecana jest także przez grono laryngologów jako urządzenie wpierające leczenie zatok czołowych oraz zapalenia zatok obocznych nosa.
      Światło lampy Bioptron zostało opracowane przez szereg specjalistów. Jej działanie jest na tyle bezpieczne, że urządzenie można stosować samodzielnie w domu, jak również z powodzeniem wykorzystywać przy leczeniu problemów skórnych u najmłodszych.
      Partnerem materiału jest MisjaZdrowia.pl – Twoja lampa Zepter Bioptron.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...