Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Umierająca planeta

Rekomendowane odpowiedzi

Astronomowie mają wyjątkową okazję oglądania śmierci planety. Międzynarodowy zespół astrofizyków odkrył, że WASP-12b jest niszczona przez swoją gwiazdę. Dzięki temu mogą badać ostatnie stadium życia planety.

Zespół pracujący pod przewodnictwem Shu-lin Li z Chińskich Narodowych Obserwatoriów Astronomicznych przeanalizował dane uzyskane z obserwacji WASP-12b i wyjaśnił, dlaczego planeta jest tak olbrzymia. Grawitacja z macierzystej gwiazdy jest tak silna, że powoduje pęcznienie planety i prowadzi ją do nieuchronnej zagłady.

WASP-12b została odkryta w 2008 roku. Krąży ona wokół gwiazdy o masie podobnej do masy Słońca, która znajduje się w konstelacji Woźnicy. Odkrycie planety wzbudziło zdumienie wśród astronomów, gdyż jest ona większa, niż przewidują modele astrofizyczne. To duża, gazowa planeta podobna do Jowisza czy Saturna. Jednak znajduje się ona od swojej gwiazdy 75-krotnie bliżej niż odległość Ziemi do Słońca. Panujące na niej temperatury przekraczają 2500 stopni Celsjusza. Specjaliści zaczęli się więc zastanawiać, co powoduje, że WASP-12b jest, zważywszy na jej orbitę, tak duża.


Analizy wykazały, że siły pływowe, wywołane bliskością gwiazdy są tak olbrzymie, iż zmieniają kształt planety. Przypomina ona piłkę do rugby. Wskutek zmiany kształtu, wewnątrz planety powstaje olbrzymie tarcie, które ją rozgrzewa, przez co WASP-12b "puchnie". Urosła ona już do takiego momentu, że nie jest w stanie utrzymać swojej materii i traci ją na rzecz gwiazdy. Astronomowie obliczyli, że traci ona materię z niezwykłą prędkością. W każdej sekundzie ubywa jej sześć miliardów ton. Planeta zniknie za około 10 milionów lat.

Materia z WASP-12b nie spada bezpośrednio na gwiazdę, ale tworzy wokół niej dysk. Szczegółowe analizy wykazały, że w jego obrębie znajduje się jeszcze jedna planeta, podobna do Ziemi.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

gdyby tak usiąść najlepiej wczesnym rankiem nad brzegiem oceanu tej drugiej, podobnej do Ziemi... co za niezwykły widok!

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Międzynarodowy zespół astronomów poinformował o odkryciu jednych z najgorętszych gwiazd we wszechświecie. Temperatura powierzchni każdej z 8 gwiazd wynosi ponad 100 000 stopni Celsjusza. Są więc one znacznie gorętsze niż Słońce.
      Autorzy badań przeanalizowali dane pochodzące z Southern African Large Telescope (SALT). Ten największy na Półkuli Południowej teleskop optyczny posiada heksagonalne zwierciadło o wymiarach 10x11 metrów. Naukowcy przeprowadzili przegląd danych pod kątem bogatych w hel karłów i odkryli niezwykle gorące białe karły oraz gwiazdy, które się wkrótce nimi staną. Temperatura powierzchni najbardziej gorącego z nich wynosi aż 180 000 stopni Celsjusza. Dla porównania, temperatura powierzchni Słońca to „zaledwie” 5500 stopni Celsjusza.
      Jedna ze zidentyfikowanych gwiazd znajduje się w centrum odkrytej właśnie mgławicy o średnicy 1 roku świetlnego. Dwie inne to gwiazdy zmienne. Wszystkie z gorących gwiazd znajdują sie na zaawansowanych etapach życia i zbliżają do końca etapu białch karłów. Ze względu na niezwykle wysoką temperaturę gwiazdy te są ponadstukrotnie jaśniejsze od Słońca, co jest niezwykłą cechą jak na białe karły.
      Białe karły to niewielkie gwiazdy, rozmiarów Ziemi, ale o olbrzymiej masie, porównywalnej z masą Słońca. To najbardziej gęste z gwiazd wciaż zawierających normalną materię. Z kolei gwiazdy, które mają stać się białymi karłami są od nich kilkukrotnie większe, szybko się kurczą i w ciągu kilku tysięcy lat zmienią się w białe karły.
      Gwiazdy o temperaturze powierzchni 100 000 stopni Celsjusza lub więcej są niezwykle rzadkie. Byliśmy bardzo zdziwieni, gdyż znaleźliśmy ich aż tak wiele. Nasze odkrycie pomoże w zrozumieniu ostatnich etapów ewolucji gwiazd, mówi Simon Jeffery z Armagh Observatory and Planetarium, który stał na czele grupy badawczej.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Gwiazdy mogą przechwytywać masywne planety wielkości Jowisza, wynika z modelu stworzonego przez naukowców z University of Sheffield. Mechanizm kradzieży wyjaśnia, skąd na orbitach gwiazd typu OB wzięły się odkryte w ubiegłym roku planety nazwane Bestiami (BEAST). Zgodnie bowiem z obecnie obowiązującymi teoriami, takie planety nie powinny istnieć.
      We wszechświecie istnieje wiele niezwykłych układów planetarnych. Z jednej strony mamy układy takie jak TRAPPIST-1, gdzie kilka niewielkich skalistych planet upakowanych jest na ciasnych orbitach wokół gwiazdy, z drugiej zaś znamy planety wielkości Jowisza, które krążą na orbitach odległych o setki jednostek astronomicznych od gwiazd. Wyjaśnienie formowania się takich układów planetarnych to poważne wyzwanie dla astronomii.
      W 2021 roku podczas projektu badawczego o nazwie B-star Exoplanet Abundance Study (BEAST) zauważono dwie planety wielkości Jowisza obiegające gwiazdy typu OB. Do tego typu należą gorące gwiazdy o masie co najmniej 2,4 razy większej od masy Słońca. Obecnie obowiązujące teorie mówią, że promieniowanie z gwiazd OB jest tak intensywne, że odparowują one otaczający je dysk akrecyjny, co uniemożliwia formowanie się planet. Tymczasem, jak wspomnieliśmy, znaleziono dwie planety wokół takich gwiazd. A jakby tego było mało jedna z nich znajduje się gigantycznej odległości 556 jednostek astronomicznych od gwiazdy. Do ponad 10-krotnie więcej niż odległość pomiędzy Plutonem a Słońcem.
      Richard Parker i Emma Daffern-Powell z University of Sheffield postanowili sprawdzić, skąd gwiazdy OB mogą mieć planety. Stworzyli model komputerowy, który miał zbadać hipotezę mówiącą, że gwiazdy OB rodzą się w miejscach dość dużego zagęszczenia gwiazd, a następnie bardzo szybko się stamtąd oddalają.
      Model wykazał, że w takim scenariuszu do przechwycenia planety przez gwiazdę OB może dochodzić 1 raz na 10 milionów lat. Ponadto, biorąc pod uwagę kształty i rozmiary orbit Bestii, gwiazdy OB z większym prawdopodobieństwem przejmą planety swobodne – takie, które zostały wyrzucone z orbity wokół gwiazdy macierzystej – niż planety znajdujące się na orbitach.
      Wykonane w Sheffield analizy wspierają więc hipotezę, że planety znajdujące na na orbitach odległych o ponad 100 j.a. nie krążą wokół gwiazd macierzystych.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Doktor Agnieszka Dziurda z Instytutu Fizyki Jądrowej PAN stoi na czele międzynarodowego zespołu naukowego, który w CERN prowadzi badania nad oscylacjami cząstek pomiędzy światem materii i antymaterii. Co prawda materia i antymateria wydają się swoimi przeciwieństwami, jednak istnieją cząstki, które raz zachowują się jak należące do świata materii, a raz antymaterii. Grupa doktor Dziurdy zmierzyła właśnie ekstremalne tempo oscylacji takich cząstek.
      Naukowcy wzięli na warsztat mezony Bs0 i za pomocą detektora LHCb z niespotykaną dotychczas dokładnością zbadali ich oscylacje. Nie byli pierwszymi, którzy podjęli się tego zadania. Już w 2006 roku w amerykańskim Fermilab mierzono to zjawisko. Nam udało się teraz poprawić dokładność pierwotnego pomiaru aż o dwa rzędy wielkości, chwali się doktor Dziurda.
      Materia widzialna jest złożona głównie z kwarków górnych, dolnych, elektronów i neutrin elektronowych. Na przykład jądra atomów zbudowane są z protonów (składających się z 2 kwarków górnych i 1 kwarka dolnego) oraz neutronów (1 kwark górny i 2 kwarki dolne). Model Standardowy klasyfikuje kwark górny, dolny, elektron i neutrino elektronowe jako cząstki jednej generacji. Istnieją jeszcze dwie inne generacje, z cząstkami o podobnych właściwościach, ale coraz bardziej masywnych.
      Kwarki nie występują swobodnie. Łączą się z innymi kwarkami. A najprostsze takie połączenie tworzy mezon, złożony z par kwark-antykwark. Mezony mogą przenosić ładunek elektryczny, lecz nie muszą. Te pozbawione ładunku elektrycznego, określane jako neutralne, wykazują frapującą cechę: oscylują między postacią materialną a antymaterialną. My skupiliśmy się na analizie częstotliwości oscylacji neutralnych mezonów zawierających kwark piękny b z trzeciej generacji i kwark dziwny s z drugiej, oznaczonych jako Bs0, mówi doktor Dziurda.
      Mezony są niestabilne i rozpadają się w czasie pikosekund. Jedna pikosekunda to 0,000000000001. Jednak zgodnie z zasadami mechaniki kwantowej, produkty rozpadu neutralnych mezonów są różne, w zależności od tego, czy w momencie rozpadu znajdowały się w świecie materii czy antymaterii. Zatem dopiero po zarejestrowaniu i zidentyfikowaniu produktów rozpadu danego mezonu mogliśmy ustalić, czy rozpadł się on jako reprezentant świata materii, czy antymaterii. Połączenie tej wiedzy z informacją o naturze cząstki w momencie produkcji pozwoliło nam na pomiar częstotliwości oscylacji, stwierdza polska uczona.
      Zespół Dziurdy przeanalizował mezony Bs0 powstałe w latach 2015–2018 w Wielkim Zderzaczu Hadronów jako wynik zderzeń proton-proton o łącznej energii 13 TeV (teraelektronowoltów). Badania wykazały, że mezony te oscylują pomiędzy materią i antymaterią 3 tryliony razy na sekundę. To aż 300-krotnie szybciej niż oscylacje typowego cezowego zegara atomowego.
      Badania takie nie tylko potwierdzają przewidywania mechaniki kwantowej, ale pozwalają zawęzić też obszar poszukiwania nieznanych cząstek spoza Modelu Standardowego.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W odległości około 420 lat świetlnych od Ziemi znajduje się jedna z najmłodszych znanych nam planet. 2M0437b została odkryta przez międzynarodowy zespół astronomów pracujący pod kierunkiem specjalistów z University of Hawai'i. Ta jedna z niewielu znanych nam młodych planet pozwoli na lepsze zrozumienie procesu formowania się i ewolucji planet.
      Naukowcy oceniają, że 2M0437b jest kilkukrotnie bardziej masywna od Jowisza i powstała wraz ze swoją gwiazdą przed kilkunastoma milionami lat, gdy na Ziemi z oceanu wyłaniały się pierwsze z głównych wysp Hawajów. Dlatego też naukowcy uważają, że planeta jest wciąż gorąca od energii pochodzącej z jej okresu tworzenia się, a temperatura jej powierzchni jest podobna do temperatury lawy.
      Planetę jako pierwszy zauważył w 2018 roku Teruyuki Hirano, wykładowca wizytujący Uniwersytet Hawajski. Odkrył ją za pomocą teleskopu Subaru i od tamtej pory jest ona badana z wykorzystaniem innych hawajskich teleskopów.
      Autorzy najnowszych badań, Eric Gaidos i jego zespół, wykorzystali Keck Observatory by potwierdzić, że 2M0437b rzeczywiście towarzyszy gwieździe 2M0437, a nie jest jakimś bardziej odległym obiektem. Badania zajęły im aż trzy lata. Trwało to tak długo, ponieważ gwiazda bardzo powoli przesuwa się na nieboskłonie.
      Gwiazda i jej planeta znajdują się w Obłoku Molekularnym w Byku. To jeden z najbliższych Ziemi regionów formowania się gwiazd. To szczególnie ciemny obłok, pozbawiony masywnych gwiazd. W ubiegłym roku dowiedzieliśmy się Obłok Molekularny w Byku wchodzi w skład fali Radcliff'a, monolitycznej struktury zbudowanej z połączonych obszarów gwiazdotwórczych. Fala ma długość około 9000 i szerokość około 400 lat świetlnych. Co interesujące, Słońce miało już z nią do czynienia. Nasza gwiazda przeszła przez falę Radliffe'a przed 13 milionami lat. Za kolejnych 13 milionów lat znowu się z nią spotka.
      Badania Gaidosa i jego zespołu pokazały, że 2M0437b znajduje się obecnie w odległości aż 100 j.a. od swojej gwiazdy. Jednostka astronomiczna to średnia odległość pomiędzy Ziemią a Słońcem. Aby dokonać tego odkrycia potrzebowaliśmy dwóch z największych teleskopów na świecie, optyki adaptatywnej oraz czystego nieba nad Mauna Kea, mówi współautor badań, Michael Liu. Czekamy na kolejne odkrycia i możliwość bardziej szczegółowych badań takich planet za pomocą technologii przyszłości.
      Nowych informacji powinien dostarczyć Teleskop Kosmiczny Jamesa Webba, którego wystrzelenie zaplanowano na 18 grudnia bieżącego roku. Powinien on pozwolić na określenie składu atmosfery 2M0437b i sprawdzenie, czy posiada ona dysk, w którym formuje się księżyc.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcom z University of Massachusetts w Amherst udało się rozwiązać jedną z podstawowych zagadek astronomii, na którą odpowiedzi szukano od lat. Dzięki ich pracy, opublikowanej na łamach Nature, wiemy, dlaczego niektóre z najstarszych i najbardziej masywnych galaktyk bardzo szybko przestały być aktywne i nie pojawiają się w nich już nowe gwiazdy.
      Najbardziej masywne galaktyki we wszechświecie powstały niezwykle szybko, krótko po Wielkim Wybuchu sprzed niemal 14 miliardów lat. Jednak z jakiegoś powodu przestały działać. Już nie powstają w nich nowe gwiazdy, mówi profesor Kate Whitaker. To właśnie formowanie się nowych gwiazd jest jednym z procesów umożliwiających wzrost galaktyk. Od dawna wiemy, że wczesne masywne galaktyki stały się nieaktywne, ale dotychczas nie wiedzieliśmy dlaczego.
      Zespół Whitaker połączył dane z teleskopu Hubble'a i ALMA. Pierwszy z nich obserwuje wszechświat w zakresie od ultrafioletu do bliskiej podczerwieni – w tym część zakresu widzialnego dla ludzkiego oka – drugi zaś pracuje w spektrum pomiędzy 0,32 do 3,6 mm, którego nasze oczy nie widzą.
      Naukowcy poszukiwali za pomocą ALMA niewielkich ilości zimnego gazu, który stanowi główne źródło energii dla procesu tworzenia się nowych gwiazd. We wczesnym wszechświecie, a więc i w tych galaktykach, było bardzo dużo tego gazu. Skoro galaktyki te przestały szybko tworzyć nowe gwiazdy, to powinno im sporo takiego gazu pozostać", spekulowali uczeni. Jednak okazało się, że w badanych galaktykach pozostały jedynie śladowej ilości zimnego gazu znajdujące się w okolicach ich centrów. To zaś oznacza, że w ciągu kilku pierwszych miliardów lat galaktyki te albo zużyły cały gaz, albo go wyrzuciły. Niewykluczone też, że istnieje jakiś mechanizm, który blokuje uzupełnianie gazu przez galaktyki.
      W następnym etapie badań naukowcy chcą sprawdzić, jak bardzo zagęszczony jest ten pozostały w starych galaktykach gaz i dlaczego znajduje się wyłącznie w pobliżu ich centrum.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...