Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Długowieczność ukryta między gałęziami

Recommended Posts

Spędzanie większości życia na drzewie może... wydłużać życie. Do takiego wniosku dochodzą badacze z University of Illinois, którzy przeanalizowali znaczną liczbę gatunków ssaków i ustalili, że zwierzęta, których tryb życia wiąże się z przebywaniem na drzewach, żyją znacznie dłużej od gatunków żyjących na ziemi.

Zgodnie z nowoczesnymi modyfikacjami teorii ewolucji zwierzęta odizolowane od zagrożenia ze strony drapieżników żyją dłużej od tych, które w swoim życiu muszą uciekać przed prześladowcami. Co jest jednak ciekawe, zależność ta dotyczy nie tylko realnego czasu życia, który - w skali populacji - znacząco spada po zabiciu młodego osobnika, lecz także czasu maksymalnego, determinowanego przez czynniki genetyczne charakterystyczne dla określonego gatunku. Świadczą o tym badania przeprowadzone przez Milenę Shattuck oraz Scotta Williamsa - magistrantów pracujących na University of Illinois. 

Młodzi naukowcy opierają swoją hipotezę na badaniu 776 gatunków należących do różnych grup ssaków. Po uwzględnieniu rozmiarów ciała poszczególnych zwierząt (nie od dziś wiadomo, że - statystycznie - im większe jest zwierzę, tym dłużej ono żyje) okazało się, że gatunki, których tryb życia jest ściśle związany z przebywaniem na drzewach, są poddane mniejszej presji ze strony drapieżników, dzięki czemu znacznie wolniej się starzeją i żyją dłużej od tych, które spędzają swoje życie na powierzchni ziemi.

Swoje przypuszczenia autorzy ilustrują dość jaskrawym przypadkiem kinkażu (Potos flavus) - ssaka nadrzewnego z rodziny szopowatych. Choć zwierzę to jest aż 40-krotnie mniejsze od tygrysa, przeważnie żyje ono dłużej od niego. Tak wyraźna dysproporcja jest pozornie sprzeczna z klasyczną wiedzą z zakresu ekologii, lecz uwzględnienie trybu życia kinkażu doskonale wyjaśnia zaobserwowane zjawisko.

Praktycznie jedynymi grupami niepasującymi do nowej hipotezy były torbacze oraz euarchonty (nadrząd ssaków, z którego wywodzą się m.in. ludzie i nietoperze). W ich przypadku stwierdzono wyjątkowo długi czas życia, lecz nie wszystkie z nich spędzają swoje życie na drzewach. Można to jednak z łatwością wyjaśnić, ponieważ torbacze generalnie nie posiadają zbyt wielu naturalnych wrogów, zaś euarchonty chronią się przed drapieżnikami dzięki znacznej inteligencji (w przypadku naczelnych) lub umiejętności latania (co dotyczy nietoperzy).

Aktualnie młodzi naukowcy z Oregonu planują przeprowadzenie badań nad ssakami żyjącymi pod ziemią. Celem studium będzie sprawdzenie, czy ochrona, jaką daje im ich tryb życia, także pozwala na opóźnienie starzenia się osobników.

Share this post


Link to post
Share on other sites

Mocno naciągane. Już sami autorzy sobie zaprzeczają, dodając kolejne wyjątki od reguły. Jeśli takie istnieją to znaczy, że teoria jest błędna.

Opierając się na samej statystyce można doszukiwać się bardzo wielu zależności, których w rzeczywistości nie ma.

Share this post


Link to post
Share on other sites

Bez sensu było by właśnie wrzucenie nietoperzy , naczelnych i torbaczy do jednego worka.

Share this post


Link to post
Share on other sites

A słoń żyje dłużej od makaka i co w związku z tym ? Wiewiórka żyje krócej od żółwia... Przecież tych wyjątków można by zrobić nieskończoność.

Muszę gdzieś "wycyganić" grant na badania porównawcze długości życia ssaków nocnych i dziennych. Ewentualnie grant na badania porównawcze ilości wydalanego moczu do masy ciała w rozróżnieniu na kolory ssaków :D

Share this post


Link to post
Share on other sites
A słoń żyje dłużej od makaka

Ekhm, w notce jest wspomniane o rozmiarach zwierząt... ::D

Wiewiórka żyje krócej od żółwia

Nie chcę się czepiać, ale dysproporcja rozmiarów jest jednak nieco inna.

Przecież tych wyjątków można by zrobić nieskończoność.

A mimo to zależność statystyczną odnaleziono i wyjaśniono.

Bez sensu było by właśnie wrzucenie nietoperzy , naczelnych i torbaczy do jednego worka.

Skoro podano różne wyjaśnienia odstępstw u tych grup, chyba jest rzeczą oczywistą, że potraktowano je indywidualnie.

Już sami autorzy sobie zaprzeczają, dodając kolejne wyjątki od reguły. Jeśli takie istnieją to znaczy, że teoria jest błędna.

Ale jednocześnie wyjaśniają przyczyny tych odstępstw, które genialnie potwierdzają prawdziwość tezy, sprowadzając wszystko do niższej presji ze strony drapieżników.

 

 

Czepialstwo dla czepialstwa, czy też nieumiejętność wyciągnięcia wniosków?

Share this post


Link to post
Share on other sites

Najwidoczniej dla takich laików jak my te badania wyglądają tak jak napisaliśmy :D

Wiewiórka też jest około 40 razy mniejsza od żółwia - więc dysproporcja rozmiarów jest taka sama jak podana w notce.

 

"A mimo to zależność statystyczną odnaleziono i wyjaśniono."

A wygląda to statystycznie jak ? W granicach błędu czy może różnica jest spora ? Zależność statystyczną można znaleźć na wszystko, ale bez podania liczb jest ona bezwartościowa. Albo coś mi umknęło, albo w statystyce pojęcie "przeważnie" nie ma miejsca.

Share this post


Link to post
Share on other sites
Wiewiórka też jest około 40 razy mniejsza od żółwia

Pewnie nie zauważyłeś, że notka dotyczy ssaków, prawda? :>

A wygląda to statystycznie jak ? W granicach błędu czy może różnica jest spora ?

W abstrakcie pracy o tym nie wspomniano, ale nie wierzę, żeby w PNAS pozwolono komukolwiek na opublikowanie pracy, w której autorzy stwierdzają co najwyżej różnice na poziomie nieistotnym statystycznie. To po prostu kwestia renomy czasopisma, a PNAS należy do najbardziej szanowanych czasopism.

Share this post


Link to post
Share on other sites

Pewnie nie zauważyłeś, że notka dotyczy ssaków, prawda? :>

Ty też dopiero teraz zauważyłeś żółwia ;)

 

W abstrakcie pracy o tym nie wspomniano, ale nie wierzę, żeby w PNAS pozwolono komukolwiek na opublikowanie pracy, w której autorzy stwierdzają co najwyżej różnice na poziomie nieistotnym statystycznie. To po prostu kwestia renomy czasopisma, a PNAS należy do najbardziej szanowanych czasopism.

 

Tak czy siak wyniki badań z wybranymi przykładami i mnóstwem wyjątków wyglądają dla mnie podejrzanie. Osobiście niczego takiego bym nie opublikował jako moje badania, ale może to dlatego że za cienki w uszach jestem z nauk przyrodniczych :D

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Wydawałoby się, że zdolność do wytwarzania nasion, owoców czy orzechów będzie rosła wraz ze wzrostem drzew. Badania prowadzone przez naukowców z 13 krajów z całego świata nie potwierdzają jednak tej hipotezy.
      Naukowcy zbadali prawie 600 gatunków drzew. Okazało się, że u około 80 proc. z nich płodność osiągała wartość szczytową, gdy drzewa były umiarkowanej wielkości. Potem zaczynała spadać. Pozostałe 20 proc. gatunków niekoniecznie posiada sekretny „eliksir młodości” – zaznaczają naukowcy. I dodają, że gatunki te prawdopodobnie również doświadczają spadku płodności w pewnym wieku. Jednak, aby to stwierdzić, nie ma na razie wystarczająco wielu danych na temat starszych, większych drzew z tej grupy gatunków.
      Publikacja autorstwa 59 badaczy z 13 krajów (Chile, Włoch, Kanady, Polski, Francji, Hiszpanii, Szwajcarii, Japonii, Słowenii, Niemiec, Panamy, Portoryko i USA) ukazała się niedawno na łamach Proceedings of the National Academy of Sciences of the United States of America. Jednymi z autorów są dr hab. Michał Bogdziewicz z Wydziału Biologii UAM w Poznaniu, dr hab Magdalena Żywiec i Łukasz Piechnik z Instytutu Botaniki im. Władysława Szafera PAN w Krakowie oraz dr Mateusz Ledwon z Instytutu Systematyki i Ewolucji Zwierząt PAN w Krakowie.
      Owoce i orzechy drzew stanowią 3 proc. diety człowieka. Są również ważne dla wielu ptaków i małych ssaków, a nasiona drzew są niezbędne do regeneracji lasów. Aby skutecznie zarządzać tymi zasobami i je chronić, musimy wiedzieć, czy prawdopodobne jest wystąpienie spadku płodności oraz w jakim rozmiarze lub wieku może się taki spadek pojawić – mówi kierujący badaniami, dr Tong Qiu z Nicholas School of the Environment na Duke University (USA), cytowany w informacji prasowej związanej z publikacją, przesłanej PAP przez UAM.
      Odpowiedź na to pozornie proste pytanie pozostawała jednak dotychczas w sferze domysłów.
      Z jednej strony jest niezwykle nieprawdopodobne, aby płodność drzew wzrastała w nieskończoność wraz z wiekiem i wielkością, biorąc pod uwagę to, co wiemy o starzeniu się lub pogarszaniu się funkcji fizjologicznych związanym z wiekiem u ludzi i innych organizmów wielokomórkowych – zauważa James S. Clark, profesor nauk o środowisku z Nicholas School of the Environment na Duke University w Durham (USA).
      Z drugiej strony, ściśle mówiąc, nie było jednoznacznych dowodów, aby to obalić – zauważa dr hab. Michał Bogdziewicz, biolog z Uniwersytetu im. Adama Mickiewicza w Poznaniu, cytowany w informacji prasowej.
      Clark zwraca uwagę, że wiele upraw drzew owocowych jest wymienianych co dwie lub trzy dekady, i że istnieją trudności w monitorowaniu produkcji nasion na drzewach rosnących poza uprawą. Właśnie dlatego większość dotychczasowych badań dotyczących płodności drzew opierała się na zestawach danych, które zawierały głównie młodsze drzewa, które są wciąż zbyt małe lub średnie. Nie mając wystarczających danych na temat produkcji nasion na późniejszych etapach rozwoju osobników naukowcy szacowali te liczby na podstawie średnich z wcześniejszych etapów.
      Problem polega na tym, że drzewa niekoniecznie produkują regularną liczbę nasion każdego roku, niezależnie od wielkości i wieku. Mogą występować ogromne różnice z roku na rok i pomiędzy drzewami – od zera nasion w jednym roku do milionów w następnym. Tak więc wykorzystanie średnich obserwacji z przeszłości do prognozowania przyszłej produkcji może prowadzić do sporych błędów – podkreślają naukowcy.
      Nowe badanie – jak informują jego autorzy – pozwala uniknąć tego problemu, gdyż zawiera syntezę danych dotyczących produkcji nasion dla 585 670 drzew z 597 gatunków monitorowanych za pośrednictwem sieci MASTIF (Masting Inference and Forecasting). Michał Bogdziewicz z UAM jest jednym z członków tej dynamicznie rozwijającej się grupy badawczej. W ramach stypendium badawczego Bekkera finansowanego przez NAWA przez najbliższe dwa lata będzie pracował w laboratorium Clarka - informuje UAM.
      Globalna baza danych stworzona przez sieć zawiera szczegółowe dane, obejmujące często wiele dziesięcioleci wstecz, a dotyczące rocznej produkcji nasion przez drzewa rosnące w ponad 500 różnych miejscach w Ameryce Północnej, Ameryce Południowej, Azji, Europie i Afryce. Nowe obserwacje można łatwo do bazy danych. Może to zrobić każdy.
      Dostęp do tak ogromnego repozytorium surowych danych umożliwił Qiu, Clarkowi i ich współpracownikom opracowanie skalibrowanego modelu, aby i dokładnie obliczyć długoterminową płodność drzew.
      Dla większości badanych przez nas gatunków, w tym ludzi, jedną z najbardziej podstawowych zmiennych, które mierzymy, jest wskaźnik urodzeń. Dla zwierząt często jest to proste – liczysz jaja w gnieździe lub szczenięta w miocie. Ale kiedy chodzi o drzewa, jest to trudniejsze. Bardzo trudno jest bezpośrednio obserwować, ile nasion jest produkowanych – wyobraźmy sobie liczenie wszystkich żołędzi na 100 letnim buku. Jak pokazuje to badanie, przybliżanie również nie działa. Potrzebny jest inny sposób. Nasz model może rozwiązać ten problem – powiedział Clark.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Starzenie się to złożony, wieloetapowy proces, który jest trudno opisać biorąc po uwagę jedną tylko zmienną, jak np. wiek. Międzynarodowy zespół naukowdy informuje na łamach Nature Communications o utworzeniu zmiennej o nazwie wskaźnik dynamicznego stanu organizmu (DOSI – dynamic organismal state indicator). To wskaźnik obliczeniowy, który ma ułatwiać systematyczne badanie procesu starzenia oraz pomóc w opracowaniu biomarkerów starzenia się.
      DOSI bierze pod uwagę m.in. dynamikę procesów biologicznych, tempo rekonwalescencji po chorobach czy urazach, rosnącą z wiekiem podatność na choroby i zwiększające się ryzyko zgonu. Twórcy wskaźnika – naukowcy z singapurskiej firmy biotechnologicznej Gero, z Roswell Park Comprehensive Cancer Center w USA oraz z trzech rosyjskich instytucji badawczych – wykorzystali następnie dane z wielkiej bazy CBC tworzonej przez amerykańskie CDC w ramach programu National Health And Nutritional Examination Surveys oraz dane z UK Biobank.
      Wcześniejsze badania wielokrotnie wykazywały, że zdrowy tryb życia, porzucenie niezdrowych zwyczajów, wydłuża ludzkie życie. Dotychczas trudno było jednak ocenić wpływ w czasie poszczególnych działań tego typu.
      Teraz dzięki wykorzystaniu DOSI badacze stwierdzili, że – jak się można było spodziewać – z wiekiem spada zdolność organizmu do regeneracji. O ile u zdrowego 40-latka całkowita regeneracja po chorobie czy urazie trwa około 2 tygodni, to u 80-latka okres ten wydłuża się do 6 tygodni. Spostrzeżenia te potwierdzono za pomocą różnych badań krwi oraz pomiarów aktywności fizycznej.
      Uczeni ekstrapolowali te wyniki w czasie i wykazali, że przeciętny człowiek, który nie cierpi na choroby przewlekłe, całkowicie utraci zdolność regeneracji organizmu w wieku 120–150 lat. To jest zatem maksymalna granica długości ludzkiego życia.
      To właśnie ta utrata zdolności do regeneracji może wyjaśniać, dlaczego nie obserwujemy, by ciągle były bite kolejne rekordy długości życia, mimo że rośnie średnia długość życia całych społeczeństw. Utrata możliwości regeneracji dotyczy bowiem nawet najzdrowszych i najlepiej starzejących się osób.
      Badania wykazały, że nie jest możliwe zwiększenie maksymalnej długości życia poprzez zapobieganie czy leczenie chorób. Aby tego dokonać, musielibyśmy umieć manipulować procesem starzenia się, który prowadzi do utraty zdolności do regeneracji.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Popularne przekonanie mówi, że jeden rok życia psa odpowiada 7 latom życia człowieka. Oznaczałoby to, że 14-letni pies to odpowiednik ludzkiego 100-latka. Naukowcy zaproponowali jednak znacznie lepszy przelicznik wieku psiego na ludzki. Przelicznik bazujący na najnowszych osiągnięciach nauki.
      Obecnie nauka o starzeniu się bazuje na zachodzących z wiekiem chemicznych modyfikacjach DNA, czyli na zegarze epigenetycznym. Każde dodanie grupy metylowej do DNA oznacza odliczanie naszego wieku, czyli wpływu chorób, tryb życia i genetyka na kondycję naszego organizmu. Podobny mechanizm działa też u innych zwierząt.
      Genetyk Try Ideker z University of California, San Diego (UCSD) wraz z zespołem, postanowił sprawdzić, jak zegary biologiczne zwierząt różnią się od zegara biologicznego człowieka. Uczeni rozpoczęli prace od psów. Wybrali właśnie te zwierzęta, gdyż żyją one w tym samym środowisku co ludzie, a wiele z nich jest otoczonych podobną opieką medyczną co ludzie.
      Wszystkie psy, niezależnie od rasy, osiągają dojrzałość płciową około 10. miesiąca życia i umierają przed 20. rokiem życia. Ideker, chcąc zwiększyć swoje szanse na zidentyfikowanie psiego zegara biologicznego skupił się na jednej rasie – labradorach retrieverach.
      Naukowcy przeanalizowali wzorce metylacji u 104 psów, których wiek wahał się od 4 tygodni do 16 lat. Badania ujawniły, że psy – a na pewno labradory – wykazują podobne do ludzi wzorce metylacji DNA związane z wiekiem. Podobieństwa mutacji w tych samych regionach DNA były najbardziej widoczne u młodych psów i młodych ludzi oraz starych psów i starych ludzi.
      Najważniejszym spostrzeżeniem było odkrycie, że w pewnych grupach genów odpowiedzialnych za rozwój metylacja w miarę starzenia się zachodzi bardzo podobnie. To zaś sugeruje, że – przynajmniej pod niektórymi względami – proces starzenia się jest tym samym, co proces rozwoju oraz że przynajmniej te zmiany są ewolucyjnie podobne u ssaków.
      Już wcześniej wiedzieliśmy, że psy wraz z wiekiem cierpią na te same choroby i podlegają takim samym zmianom poznawczym co ludzie. Tutaj mamy dowód na to, że również na poziomie molekularnym zachodzą podobne zmiany, mówi Matt Kaeberlein, biogerontolog z University of Washington, który nie był zaangażowany w najnowsze badania. Widać zatem, że dzielimy z psami również zegar biologiczny.
      Na podstawie swoich badań naukowcy stwierdzili, że wzór na przeliczenie wieku psa na wiek człowieka wygląda następująco: wiek człowieka = 16 ln(wiek psa) + 31. Innymi słowy należy logarytm naturalny z wieku psa pomnożyć przez 16 i dodać 31.
      Wynika z tego, że 7-tygodniowy szczeniak, gdyby był człowiekiem, miałby 9 miesięcy. W tym mniej więcej czasie u młodych obu gatunków zaczynają wyżynać się zęby. Formuła ta dobrze też pasuje do przeciętnej długości życia labradora i człowieka. W przypadku tej rasy wynosi ona bowiem 12 lat, a w przypadku ludzi jest to 70 lat.
      Na początku życia zegar biologiczny psa bije znacznie szybciej niż człowieka. Dwuletni labrador wciąż zachowuje się jak szczeniak, ale gdyby był człowiekiem, wchodziłby w wiek średni.
      Wspomniany wyżej Matt Kaeberlein rozpoczął niedawno Dog Aging Project, który jest otwarty dla wszystkich ras psów. Uczony chce dowiedzieć się, dlaczego niektóre psy chorują we wczesnym wieku i szybciej umierają, a inne cieszą się długim życiem bez chorób.
      Wiek psa (w latach)Odpowiednik wieku człowieka (w latach) 1 31,0 2 42,1 3 48,6 4 53,2 5 56,8 6 59,7 7 62,1 8 64,3 9 66,2 10 67,8 11 69,4 12 70,8 13 72,0 14 73,2 15 74,3 16 75,4 17 76,3 18 77,2 19 78,1 20 78,9 21 79,7 22 80,5
      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Dzięki współpracy instytucji z Rosji i USA udało się zidentyfikować genetyczne biomarkery długowieczności. Wyniki badań ukazały się w piśmie Cell Metabolism.
      Do zabiegów, o których wiadomo, że wydłużają życie, należą interwencje chemiczne, np. podanie sirolimusa (rapamycyny), czy diety (ograniczenie liczby spożywanych kalorii).
      Odkryto część celów tych interwencji, nadal jednak nie poznano szczegółów związanych z układowymi mechanizmami molekularnymi prowadzącymi do wydłużenia życia.
      Naukowcy z Skolkovo Institute of Science and Technology (Skoltech) oraz Uniwersytetu Harvarda postanowili uzupełnić tę lukę w wiedzy i zidentyfikować kluczowe procesy molekularne związane z długowiecznością. W tym celu analizowano wpływ różnych interwencji na aktywność genów myszy.
      W laboratorium poddaliśmy 8 interwencjom samce i samice myszy w różnym wieku. Analizowaliśmy zmiany ekspresji genów wywołane przez te zabiegi [przeprowadzono sekwencjonowanie RNA]. Po zebraniu naszych wyników i danych opublikowanych przez innych naukowców uzyskaliśmy profile aktywności genów przy 17 typach interwencji. Pojawiały się, oczywiście, efekty specyficzne dla interwencji, ale stwierdzono także, że istnieje grupa genów, która zmienia swą aktywność w podobny sposób w odpowiedzi na różne wydłużające życie zabiegi - opowiada Alexander Tyshkovskiy.
      Zidentyfikowano m.in. wątrobowe sygnatury genowe związane z wydłużeniem życia. Należą do nich nasilenie fosforylacji oksydacyjnej i metabolizmu leków.
      W następnym etapie naukowcy wykorzystali nowo odkryty zestaw biomarkerów do poszukiwania interwencji o zbliżonym wpływie na ich aktywność (a zatem o dużym potencjale wydłużenia życia). Dzięki temu udało się wytypować kilka takich zabiegów, w tym chroniczne niedotlenienie (hipoksję) czy związki chemiczne, np. palmitynian askorbylu oraz inhibitor mTOR - KU-0063794.
      Obecnie potwierdzamy te wskazania, badając ich wpływ na długość życia myszy. Mamy nadzieję, że zidentyfikowane biomarkery znacząco ułatwią poszukiwania nowych wydłużających życie interwencji i pomogą poprawić stan zdrowia i długowieczność gryzoni, a w dłuższej perspektywie ludzi.
      Akademicy opracowali aplikację GENtervention, która zapewnia szybkie i przyjazne użytkownikowi narzędzia do badania związków między aktywnością poszczególnych genów a długowiecznością.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Kiedyś sądzono, że najstarszymi komórkami w organizmie człowieka są neurony i, być może, komórki serca. Teraz naukowcy z Salk Institute udowodnili, że u myszy komórki oraz białka mózgu, wątroby i trzustki są także bardzo stare. Niektóre równie stare co neurony. Metoda wykorzystana w Salk może zostać użyta do zdobycia bezcennych informacji na temat funkcji niedzielących się komórek oraz o tym, jak z wiekiem tracą one kontrolę nad jakością i integralnością protein oraz innych ważnych struktur komórkowych.
      Byliśmy zaskoczeni faktem, że odnaleźliśmy struktury komórkowe równie stare co organizm. To sugeruje, że złożoność komórkowa jest większa niż sobie to wyobrażaliśmy, co niesie ze sobą intrygujące implikacje dotyczące naszej wiedzy o starzeniu się organów takich jak mózg, serce czy trzustka, mówi dyrektor ds. naukowych Salk Institute profesor Martin Hetzer.
      Większość neuronów w mózgu nie ulega w życiu dorosłym podziałowi, zatem doświadczają starzenia się i związanego z tym spadku jakości. Dotychczas jednak naukowcy mieli problemy z określeniem czasu życia komórek znajdujących się poza mózgiem.
      Biolodzy zadawali sobie pytanie, jak stare są komórki w organizmie. Istnieje powszechne przekonanie, że neurony są stare, ale inne komórki są stosunkowo młode, gdyż ulegają regeneracji, stwierdził Rafael Arrojo e Drigo, główny autor najnowszych badań.
      Uczeni wykorzystali neurony jako punkt odniesienia dla określenia wieku innych komórek. Wykorzystali technikę oznaczania izotopami w połączeniu z hybrydową metodą obrazowania MIMS-EM do wizualizacji i oceny komórek oraz białek w móżgu, trzustce i wątrobie u młodych i starych myszy.
      Na samym początku ocenie poddali wiek neuronów i, jak się spodziewali, stwierdzili, że są one w tym samym wieku co sam organizm. Później jednak ze zdumieniem zauważyli, że w nabłonku naczyń krwionośnych występują równie stare komórki. To zaś oznaczało, że poza neuronami istnieją komórki, które się nie dzielą i nie zostają zastąpione. Również w trzustce zauważono komórki w różnym wieku. Najbardziej zdziwiły naukowców wysepki Langerhansa, które są mieszaniną starych i młodych komórek. Niektóre z komórek beta były młode, ulegały podziałowi, inne zaś były równie stare co neurony. Z kolei komórki delta w ogóle się nie dzieliły i wszystkie były stare. Trzustka okazała się zdumiewającym przykładem mozaicyzmu wiekowego, czyli organem, w którym identyczne komórki są w bardzo różnym wieku.
      Jako, że wiemy, iż wątroba potrafi się regenerować nawet w dorosłości, naukowcy zwrócili uwagę również na ten organ. Ku ich zdumieniu okazało się, że większość komórek wątroby jest w tym samym wieku, co sama mysz, podczas gdy komórki układu krwionośnego wątroby są znacznie młodsze. Mozaicyzm wiekowy wątroby może prowadzić do opracowania nowych metod regeneracji tego organu.
      Dzięki nowej technice wizualizacji jesteśmy w stanie określić wiek komórek i ich złożoność molekularnych lepiej, niż wcześniej. To otwiera nowe drzwi w badaniu komórek, tkanek i organów oraz trapiących je chorób, stwierdził współautor badań profesor Mark Ellisman z Uniwersytetu Kalifornijskiego w San Diego.
      Na następnym etapie badań naukowcy chcą zbadać różnice w długości życia kwasów nukleinowych i lipidów. Spróbują też zrozumieć, jak mozaicyzm wiekowy wpływa na zdrowie i na choroby takie jak cukrzyca typu 2.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...