Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  

Recommended Posts

Słonie nie kojarzą się nam ze zgrabnym poruszaniem, co znalazło nawet swój wyraz w przysłowiach, ale nie oznacza to, że nie potrafią rozwijać sporych prędkości. Biolodzy zastanawiali się, czy idą wtedy, czy już biegną. Okazało się, że i jedno, i drugie. Słoń biegnie przednimi nogami, podczas gdy tylne cały czas idą (Journal of Experimental Biology).

Już wcześniejsze badania sugerowały, że rozpędzone słonie trochę biegną, a trochę spacerują. Belgijsko-włosko-tajlandzki zespół zdobył jednak wiele dodatkowych informacji, wykorzystując specjalnie skonstruowany tor. Dzięki temu udało się dokonać dokładnych pomiarów sił działających podczas wykonywania kolejnych kroków.

Jak wyjaśnia profesor Norman Heglund z Katolickiego Uniwersytetu w Leuven, naukowcy musieli sami skonstruować platformy dynamometryczne– płyty mierzące siłę nacisku. Trzeba je było przecież jakoś dostosować do rozmiarów słoni. Mając już za sobą ten etap, naukowcy udali się do Thai Elephant Conservation Centre. Kornacy dosiadali słoni indyjskich i zachęcali je do przemierzania wyznaczonej trasy. Najszybszy osobnik rozpędził się do 18 km na godzinę. Wyczyny szarych olbrzymów utrwalano na kamerze szybkoklatkowej.

Biolodzy porównali odczyty z platformy dynamometrycznej z poszczególnymi klatkami. W ten sposób wyliczyli energię potencjalną i kinetyczną poruszającego się słonia. Określenie relacji między energią potencjalną (zmagazynowaną w mięśniach, stawach i ścięgnach) a energią kinetyczną jest kluczowe dla stwierdzenia, czy zwierzę idzie, czy biegnie. Kiedy słoń podnosi nogę i przesuwa ją ku przodowi, energia potencjalna zamienia się w kinetyczną. Gdy noga ląduje na ziemi, na powrót zmienia się w potencjalną. Proces ten powtarza się wiele razy w czasie jednej rundki po okolicy. Podczas biegu zamiana jest ciągła, bez wyraźnie wyodrębnionych cykli. W przypadku słonia energie potencjalna i kinetyczna [...] osiągają minimum i maksimum w tym samym czasie, dlatego nie mogą być "wymieniane" po sobie raz za razem – tłumaczy Heglund.

Dodatkowo badacze zauważyli, że najszybsze słonie biegną i idą jednocześnie. Wygląda to tak, jakby słoń zbliżał się do prędkości przejściowej, kiedy przestaje iść i zaczyna biec, ale nie doprowadzał tego do końca. Przypomina to niemożność wrzucenia drugiego biegu. Za pomocą platform dynamometrycznych międzynarodowy zespół ustalił również, że słonie poruszają się niezwykle ekonomicznie, zwłaszcza w porównaniu do mniejszych zwierząt. W przyszłości biolodzy zamierzają przeprowadzić identyczny eksperyment z nosorożcami i hipopotamami.

Share this post


Link to post
Share on other sites

myślę, że najlepszym komentarzem będą przystosowane do tego artykułu słowa J. Gmocha: słonie idąc trochę szybkie są bardzo.    :D

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Słoniowa trąba to jeden z najbardziej niezwykłych narządów w świecie zwierząt. Jest jednocześnie silna i niezwykle wrażliwa, a napędza ją około 40 000 mięśni, podczas gdy całe ciało człowieka zawiera 600–700 mięśni. Słonie używają jej do oddychania, podnoszenia ciężkich przedmiotów, picia, polewania się wodą czy posypywania piaskiem. Zwierzęta niemal bez przerwy badają swoje otoczenie końcem trąby. Nic więc dziwnego, że budzi ona duże zainteresowanie naukowców.
      Naukowców z Uniwersytetu Humboldtów w Berlinie, berlińskiego zoo i Leibniz-Institut für Zoo- und Wildtierforschung zainteresowały wibrysy na końcu słoniowej trąby. Postanowili sprawdzić, czemu one służą.
      Najpierw analizowali materiały filmowe nagrane z niewielkiej odległości, a pokazujące, jak słonie używają trąby. Nagrania były wykonywane m.in. w czasie, gdy zwierzęta, przez wyciętą w pudełku dziurę, wyjmowały jabłka czy marchewki. Naukowcy patrzyli, czy wibrysy odgrywają w tym jakąkolwiek rolę. Zauważyli, że włosy u słoni działają inaczej, niż wibrysy u innych zwierząt, nie poruszają się, nie zginają, nie reagują w żaden zauważalny sposób.
      W ramach drugiego etapu badań naukowcy przeprowadzali sekcję trąb zmarłych słoni. Okazało się, że ich wibrysy są cylindryczne i grubsze od wibrysów innych zwierzą. W mieszkach włosowych nie znaleźli też nerwów. Doszli zatem do wniosku, że włosy na końcu trąby nie służą zwierzętom do dotykowego poznawania otoczenia czy orientacji w przestrzeni.
      Ich zdaniem włosy te służą wyłącznie do oceny siły, z jaką trąba ma działać na przedmiot, który słoń chce podnieść czy przesunąć. Zwierzęta te używają trąby do tak wielu zadań i manipulują za jej pomocą tak różnymi przedmiotami, że muszą dobrze oceniać siłę interakcji, by np. nie uszkodzić interesującego je przedmiotu.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W ciągu ostatnich trzystu lat słonie indyjskie straciły aż 3 miliony km2 habitatu, informują naukowcy z Uniwersytetu Kalifornijskiego w San Diego. Tak dramatyczny spadek przestrzeni życiowej słoni to skutek działalności człowieka i może on wskazywać na wciąż istniejący konflikt pomiędzy słoniami a ludźmi. Uczeni z San Diego na podstawie dostępnych danych dotyczących użytkowania ziemi przez ludzi, stworzyli komputerowy model zmian przestrzeni życiowej dostępnej dla słoni na przestrzeni ostatnich 1300 lat. Okazało się, że w ciągu zaledwie 3 ostatnich wieków ludzie zabrali tym zwierzętom 2/3 habitatu.
      Słoń indyjski, największy ssak Azji, zamieszkiwał w przeszłości olbrzymie połacie kontynentu. Naukowcy, posługując się danymi z lat 850–2015 stwierdzili, że zwierzęta utraciły na rzecz ludzi ponad 64% zajmowanych w przeszłości terenów. Jeszcze do XVIII wieku habitaty słoni były stabilne. Wówczas zaczęto jednak stosować przyniesione przez kolonistów praktyki wykorzystywania ziemi, metody uprawy rolnej oraz hodowli zwierząt i masowej wycinki lasów. W ten sposób średnia wielkość nienaruszonych fragmentów habitatu odpowiednich dla słoni skurczyła się z 99 000 do 16 000 kilometrów kwadratowych, a powierzchnia największego niezaburzonego habitatu spadła z 4 milionów do 54 000 km2. Co więcej, badania wskazują, że obecnie żyjące słonie nie mają już nigdzie odpowiedniego habitatu. Jeszcze w 1700 roku 100% habitatu w promieniu 100 kilometrów od występowania słoni nadawało się do życia dla tych zwierząt. W roku 2015 odsetek ten spadł do mniej niż 50%. To zaś oznacza zwiększone zagrożenie konfliktami pomiędzy słoniami a ludźmi. Z braku miejsca do życia słonie w coraz większym stopniu wkraczają na tereny odebrane im w przeszłości przez ludzi.
      Na przełomie XVII i XVIII wieku na całym świecie doszło do dramatycznych zmian w sposobie użytkowania ziemi. Konsekwencje tej zmiany widzimy do dzisiaj, mówi jeden z autorów badań, profesor Shermin de Silva.
      Działania człowieka prowadzą do ciągłej utraty habitatów przez liczne gatunki ssaków. Trudno jednak jest ocenić długoterminowy wpływ taki zmian, gdyż brakuje danych historycznych. Tym bardziej cenne są powyższe badania, w czasie których naukowcy wykorzystali różnego typu dane, w tym rekonstrukcje historyczne, sięgające aż IX wieku. Autorzy badań sądzą, że główną przyczyną utraty habitatów było porzucenie przez ludzi tradycyjnych praktyk korzystania z ziemi.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Zwierzęta nie przestają nas zaskakiwać. Nawet tak – zdawałoby się – dobrze poznane, jak słonie. Tym razem okazało się, że słoniowa trąba ma niesamowite możliwości ssące. Jak czytamy w Journal of the Royal Society Interference, słoń potrafi wciągać powietrze z prędkością znacznie przekraczającą prędkość większości superszybkich pociągów.
      Naukowcy z Georgia Institute of Technology, University of Alabama, Zoo Atlanta oraz Icahn School of Medicine at Mount Sinai postanowili dokładnie przyjrzeć się, w jaki sposób słonie używają trąby. Szczególnie interesowało ich, jak zwierzęta wykorzystują przepływ powietrza podczas posługiwania się trąbą. Dokonywali przy tym pomiarów, by stwierdzić, co się dzieje wewnątrz m.in. podczas picia. Zauważyli, że słoń w ciągu sekundy jest w stanie wciągnąć trąbą 3 litry wody. Po dokonaniu odpowiednich obliczeń okazało się, że aby tego dokonać zwierzę musi wciągać powietrze z prędkością ponad... 540 km/h.
      Słoniowa trąba to zadziwiające narzędzie, którego działania do końca nie rozumiemy. Mimo, iż waży ponad 100 kilogramów, słonie żywią się za jej pomocą bardzo lekkimi roślinami. Jak więc potrafią, mając do dyspozycji tak duże i masywne narzędzie, manipulować drobnymi i lekkimi przedmiotami? Już wcześniej zauważono, że za pomocą trąby słonie nie tylko zbierają pożywienie, ale też je zasysają. Teraz wyliczono, że podczas zasysania płynu średnica trąby może zwiększać się o 30%, co prowadzi do zwiększenia jej objętości o 64%.
      Od dawna wiemy, że słonie używają powietrza i wody do manipulowania przedmiotami. To również ich wyjątkowa umiejętność, gdyż wykorzystywanie wody do manipulowania przedmiotami jest właściwe dla ryb, a nie zwierząt lądowych. Jednak te olbrzymie zwierzęta potrafią nie tylko zasysać przedmioty czy je odpychać. Są też w stanie odbijać strumień powietrza od ściany, by przysunąć do siebie interesujący je obiekt. A gdy przekraczają głębokie zbiorniki wodne, unoszą trąby do góry i przez nie oddychają.
      Naukowcy chcą teraz dokładnie poznać mechanikę mięśni słoniowej trąby. Ta fascynująca część ciała już zainspirowała robotykę, a lepsze jej poznanie pozwoli na stworzenie jeszcze doskonalszych urządzeń.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Słonie, choć to sprzeczne z intuicją, zjadając i zadeptując roślinność, pomagają lasom przechowywać więcej węgla pobranego z atmosfery. Jeśli słonie wyginą, ilość węgla składowanego w lasach tropikalnych centralnej Afryki zmniejszy się o 7%.
      Fabio Berzaghi i jego koledzy z Laboratorium Klimatu i Nauk Przyrodniczych w Gif-sur-Yvette we Francji chcieli sprawdzić czy słonie, niszcząc roślinnośc, wspomagają większe drzewa, by te rosły jeszcze większe. Naukowcy stworzyli model matematyczny, w którym opisali różnorodność roślin i symulowali wspływ słoni polegający na tym, że eliminują one częśc mniejszych roślin.
      Model wykazał, że słonie zmniejszają gęstość roślinności w lesie, ale przez to zwiększają średni obwód pni drzew i ogólną ilość biomasy roślinnej. Dzięki nim długo rosnące drzewa żyją dłużej i przechwytują większą ilość węgla. Dane z modelu zgadzają się z danych obserwacyjnych z Kongo, gdzie porównywano roślinność w miejscach, w których żyją słonie i miejscach, gdzie zwierzęta te nie występują.
      Istnienie słoni może też wyjaśniać widoczne różnice pomiędzy lasami deszczowymi Afryki i Ameryki Południowej. W Ameryce brak jest wielkich roślinożerców, w lesie deszczowym liczba drzew na hektar jest większa, ale zwykle drzewa te są mniejsze, mniejsza jest też ich łączna masa. Sądzimy, że do istnienia tych różnic przyczyniają się wielcy roślinożercy, mówi Berzaghi.
      Jako, że wielkie afrykańskie drzewa długo żyją, gwałtowny spadek populacji słoni, do jakiego doszło w ciągu ostatnich stu lat, gdy ich liczebność zmniejszyła się z 1 000 000 do obecnych 100 000, nie jest jeszcze widoczny w wyglądzie lasu. Jednak, jak wynika z obliczeń, spadek ten oznacza, że biomasa afrykańskiego lasu deszczowego zmniejszy się o 3 gigatony węgla, czyli o tyle ile np. Wielka Brytania emituje w ciągu 14 lat.
      Jak zauważa Berzaghi, słonie wyświadczają nam bezpłatnie usługę, dzięki której w atmosferze jest mniej węgla, a więc zmniejszają efekt cieplarniany.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Zdecydowana większość ludzi chodzi z wyprostowanymi ramionami, a biega ze zgiętymi. Jeśli spróbujemy biegać z wyprostowanymi ramionami szybko okaże się, że nie jest to takie proste.
      Pozycja ramion przy bieganiu i chodzeniu jest uniwersalna niemal dla wszystkich ludzi. Dotychczas jednak nie prowadzono badań, mających wyjaśnić, dlaczego jest taka a nie inna.
      Andrew Yegian i jego koledzy z Uniwersytetu Harvarda poprosili 8 studentów, by ci chodzili i biegali na automatycznej bieżni zarówno z ramionami wyprostowanymi, jak i zgiętymi. U sześciu z nich mierzono też zużycie tlenu.
      Tak, jak można było się spodziewać, spacer ze zgiętymi ramionami był bardziej wymagający energetycznie, niż z ramionami wyprostowanymi. Badani zużywali wówczas o 11% więcej tlenu. Jednak niespodziewanie okazało się, że bieg z wyprostowanymi ramionami nie powoduje większego zużycia energii, niż bieg z ramionami zgiętymi. Wszyscy badani powiedzieli, że bieganie z wyprostowanymi ramionami było trudniejsze. Dlatego zdziwiło nas, że nie odnotowaliśmy żadnej różnicy w zużyciu energii, mówi Yegian.
      W pozycji ramion podczas poruszania się istotne jest wydatkowanie energii, a konkretnie o równowagę pomiędzy energią zużywaną przez ramię i łokieć. Zgięcie górnej kończyny wymaga zużycia większej ilości energii przez łokieć, gdyż trzeba opierać się grawitacji. Jednocześnie jednak samo ramię jest krótsze i oszczędzamy energię potrzebną do jego poruszania.
      Wyniki badań sugerują, że gdy idziemy ze zgiętymi kończynami górnymi, musimy wydatkować więcej energii na pokonanie grawitacji niż zyskujemy jej na ruchu krótszego ramienia. Jednak zaobserwowany brak różnic w zużyciu tlenu podczas biegania z ramionami wyprostowanymi i zgiętymi sugeruje istnienie równowagi energetycznej. Poruszanie dłuższym ramieniem czy poruszanie krótszym ramieniem ale przy konieczności pokonania grawitacji przez zgięty łokieć wymaga tyle samo energii.
      Zagadka, dlaczego zginamy ramiona w czasie biegu pozostaje więc niewyjaśniona. Nie niesie to za sobą żadnych korzyści. Być może jednak odpowiedź leży w sposobie przeprowadzenia badań. Otóż studenci na bieżni biegali dość powoli. Niewykluczone więc, że korzyści ze zginania ramion ujawniają się dopiero podczas szybkiego biegu. A może zgięcie ramion pozwala na rozproszenie energii i mięśnie górnych części ramienia mniej się męczą? To hipotezy, które będziemy testowali w przyszłości, mówi Yegian.
      Nie można wykluczyć, że sposób, w jaki biegamy, był istotnym składnikiem naszej ewolucji. Mniej więcej 1,5 miliona do 2 milionów lat temu nasi przodkowie zaczęli biegać w pozycji wyprostowanej, wyewoluowały u nich krótsze ramiona. To sugeruje, że pozycja łokcia w czasie biegania może mieć coś wspólnego z tą zmianą ewolucyjną, stwierdza yegian.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...