Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Jak wytworzyć naddźwiękową falę?

Recommended Posts

Kamień uderzający w lustro wody może wywołać powstanie naddźwiękowego strumienia powietrza - udowadniają naukowcy z holenderskiego Uniwersytetu w Twente. To niespodziewane odkrycie rozszerza naszą wiedzę na temat aerodynamiki i może pomóc m.in. w stworzeniu bardziej efektywnych pojazdów.

Badaniem niezwykłego zjawiska zajmował się Stephan Gekle, magistrant pracujący na holenderskiej uczelni. Młody badacz obserwował fale powstające na powierzchni wody po uderzeniu płaskiego dysku, a więc w sytuacji podobnej do zabawy w "puszczanie kaczek" z brzegu jeziora.

Jak się okazało, powietrze poruszone przez krążek wybija w powierzchni wody podłużną szczelinę. Po chwili zostaje ona ściśnięta przez otaczającą ciecz i przyjmuje kształt klepsydry. Po zaledwie kilku milisekundach zwężenie w środkowej części fali zaciska się jeszcze bardziej, zwiększając ciśnienie powietrza zamkniętego pomiędzy powierzchnią wody a wciąż opadającym "kamieniem".

Zaraz po tym, jak szyjka "klepsydry" zamyka się całkowicie, ciśnienie powietrza przekracza krytyczną wartość i powoduje nagłe wystrzelenie strugi gazu. Na podstawie serii pomiarów ustalono, że strumień ten, mający szerokość ok. 1 mm, osiąga prędkość dźwięku. Obserwacja ta zaskoczyła nawet samego autora studium, gdyż jedyne dostępne dotąd (i do tego czysto teoretyczne) dane zakładały, że naddźwiękowe strugi powietrza mogłyby mieć co najwyżej szerokość mierzoną w mikrometrach. To ekscytujące i zaskakujące, że dzieje się to tak naprawdę przy makroskopowych rozmiarach szyjki, podkreśla badacz. 

 

Źródło: Stephan Gekle 

Dokonane odkrycie może mieć istotne znaczenie dla m.in. badań z zakresu aerodynamiki i hydrodynamiki. Dokładne zrozumienie zjawisk rządzących przepływem cieczy oraz gazów może ułatwić uporządkowanie ich przepływu wokół różnych obiektów, zmniejszając tym samym ilość energii potrzebnej do utrzymania ich w ruchu. Efektem takich działań może być m.in. zmniejszenie zużycia paliwa przez nasze samochody lub poprawę sprawności elektrowni wiatrowych.

Share this post


Link to post
Share on other sites

No to może jakiś kumacz spośród czytelników Kopalni wyjaśni zagadkę energii promieniowanej przez kawitację? Ponoć spektrum tej energii wskazuje na niebotyczne energie. Co się dzieje podczas zjawiska kawitacji? Bo ja podejrzewam, że ono może zachodzić w tym przypadku.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Naukowcy z Queen Mary University, University of Cambridge oraz Instytutu Fizyki Wysokich Ciśnień z Troicku określili górną granicę prędkości dźwięku. Okazało się, że wynosi ona około 36 100 m/s (129 360 km/h), czyli trzykrotnie więcej niż prędkość dźwięku w diamencie. Przypomnijmy, że w powietrzu prędkość dźwięku to ok. 340 m/s (1225 km/h).
      Fale dźwiękowe znacznie szybciej przenoszą się w ciałach stałych niż w gazach. Dlatego też, np. pociąg szybciej usłyszymy przykładając ucho do szyn niż nasłuchując z powietrza. Ze szczególnej teorii względności wiemy, że maksymalna prędkość światła wynosi ok. 300 000 km/s. Dotychczas jednak nie wiedzieliśmy, czy istnieje i jaka jest górna granica prędkości dźwięku w gazach czy ciałach stałych. Teraz z artykułu opublikowanego na łamach Science Advance dowiadujemy się, że maksymalna prędkość dźwięku w danym ośrodku zależy od stałej struktury subtelnej oraz stosunku masy protonu do elektronu.
      Nie od dzisiaj wiemy, że te dwie stałe odgrywają ważną rolę w naszym rozumieniu wszechświata. Od nich zależą różne procesy, takie jak rozpad protonu i synteza jądrowa zachodząca w gwiazdach. To od równowagi pomiędzy nimi zależy istnienie ekosfery wokół gwiazd, gdzie mogą pojawić się pierwsze molekuły życia.
      Naukowcy przetestowali swoje teoretyczne obliczenia na bardzo wielu materiałach. Szczególnie skupili się na sprawdzeniu jednego szczególnego zjawiska. Otóż z ich wyliczeń wynikało, że prędkość dźwięku powinna spadać wraz ze wzrostem masy atomów, z których zbudowany jest ośrodek. To zaś oznaczało, że dźwięk najszybciej rozprzestrzenia się w zestalonym wodorze atomowym. Jednak materiał taki można uzyskać przy ciśnieniu powyżej 1 miliona atmosfer. To ciśnienie porównywalne z tym, jakie istnieje w jądrze Jowisza. Wtedy też wodór staje się metalicznym ciałem stałym, świetnie przewodzi elektryczność i prawdopodobnie jest nadprzewodnikiem w temperaturze pokojowej. Dlatego też naukowcy wykonali obliczenia dla rozprzestrzeniania się dźwięku w takim zestalonym wodorze i zauważyli, że jego prędkość jest bliska teoretycznej granicy.
      Szczegóły badań opublikowano w pracy Speed of sound form fundamental physical constants.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Ponad połowa największych jezior na świecie traci wodę, wynika z badań przeprowadzonych przez międzynarodowy zespół naukowy z USA, Francji i Arabii Saudyjskiej. Przyczynami tego stanu rzeczy są głównie globalne ocieplenie oraz niezrównoważona konsumpcja przez człowieka. Jednak, jak zauważają autorzy badań, dzięki opracowanej przez nich nowej metodzie szacunku zasobów wody, trendów oraz przyczyn jej ubywania, można dostarczyć osobom odpowiedzialnym za zarządzanie informacji, pozwalającymi na lepszą ochronę krytycznych źródeł wody.
      Przeprowadziliśmy pierwsze wszechstronne badania trendów oraz przyczyn zmian ilości wody w światowych jeziorach, wykorzystując w tym celu satelity oraz modele obliczeniowe, mówi główny autor badań, Fangfang Yao z Uniwersytetu Kalifornijskiego w Boulder (CU Boulder). Mamy dość dobre informacje o słynnych jeziorach, jak Morze Kaspijskie, Jezioro Aralskie czy Salton Sea, jeśli jednak chcemy dokonać szacunków w skali globalnej, potrzebujemy wiarygodnych informacji o poziomie wód i objętości jeziora. Dzięki tej nowej metodzie możemy szerzej spojrzeć na zmiany poziomu wód jezior w skali całej planety, dodaje profesor Balaji Rajagopalan z CU Boulder.
      Naukowcy wykorzystali 250 000 fotografii jezior wykonanych przez satelity w latach 1992–2020. Na ich podstawie obliczyli powierzchnię 1972 największych jezior na Ziemi. Użyli też długoterminowych danych z pomiarów poziomu wód z dziewięciu satelitów. W przypadku tych jezior, co do których brak było danych długoterminowych, wykorzystano pomiary wykorzystane za pomocą bardziej nowoczesnego sprzętu umieszczonego na satelitach. Dzięki połączeniu nowych danych z długoterminowymi trendami byli w stanie ocenić zmiany ilości wody w jeziorach na przestrzeni kilku dziesięcioleci.
      Badania pokazały, że 53% największych jezior na świecie traci wodę, a jej łączny ubytek jest 17-krotnie większy niż pojemność największego zbiornika na terenie USA, Lake Meads. Wynosi zatem około 560 km3 wody.
      Uczeni przyjrzeli się też przyczynom utraty tej wody. W przypadku około 100 wielkich jezior przyczynami były zmiany klimatu oraz konsumpcja przez człowieka. Dzięki tym badaniom naukowcy dopiero teraz dowiedzieli się, że za utratą wody w jeziorze Good-e-Zareh w Afganistanie czy Mar Chiquita w Argentynie stoją właśnie takie przyczyny. Wśród innych ważnych przyczyn naukowcy wymieniają też odkładanie się osadów. Odgrywa ono szczególnie ważną rolę w zbiornikach, które zostały napełnione przed 1992 rokiem. Tam zmniejszanie się poziomu wody jest spowodowane głównie zamuleniem.
      Podczas gdy w większości jezior i zbiorników wody jest coraz mniej, aż 24% z nich doświadczyło znacznych wzrostów ilości wody. Są to głównie zbiorniki znajdujące się na słabo zaludnionych terenach Tybetu i północnych części Wielkich Równin oraz nowe zbiorniki wybudowane w basenach Mekongu czy Nilu.
      Autorzy badań szacują, że około 2 miliardów ludzi mieszka na obszarach, gdzie w zbiornikach i jeziorach ubywa wody, co wskazuje na pilną potrzebę uwzględnienia takich elementów jak zmiany klimatu, konsumpcja przez człowieka czy zamulanie w prowadzonej polityce. Jeśli na przykład konsumpcja przez człowieka jest ważnym czynnikiem prowadzącym do utraty wody, trzeba wprowadzić mechanizmy, które ją ograniczą, mówi profesor Ben Livneh. Uczony przypomina jezioro Sevan w Armenii, w którym od 20 lat poziom wody rośnie. Autorzy badań łączą ten wzrost z wprowadzonymi i egzekwowanymi od początku wieku przepisami dotyczącymi sposobu korzystania z wód jeziora.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Przed 75 laty, 14 października 1947 roku nad pustynią w Kalifornii rozległ się pierwszy sztuczny grom dźwiękowy. Wtedy to Chuck Yeager, pilotujący eksperymentalny samolot Bell X-1, przekroczył prędkość dźwięku. Pierwszy ponaddźwiękowy lot był olbrzymim osiągnięciem inżynieryjnym. Teraz NASA znowu chce przekroczyć prędkość dźwięku, ale znacznie ciszej. Jeśli się uda, być może na niebie zagoszczą naddźwiękowe samoloty pasażerskie.
      Catherine Bahm z Armstrong Flight Research Center, kieruje projektem Low Boom Flight Demonstrator. Zadaniem jej zespołu jest zbudowanie i przetestowanie eksperymentalnego samolotu X-59, który stanowi główny element prowadzonego przez NASA programu Quesst. Ma on umożliwić naddźwiękowe loty nad lądem, znacznie skracając czas podróży lotniczych.
      W 1962 roku Francja i Wielka Brytania ogłosiły projekt budowy naddźwiękowego samolotu pasażerskiego. Niecały rok później prezydent Kennedy zaproponował rozpoczęcie podobnego projektu SST. W 1971 roku prace nad projektem zakończono, a w roku 1973 w USA zakazano lotów naddźwiękowych nad lądem. Właśnie z powodu gromu dźwiękowego pojawiającego się przy przekraczaniu prędkości dźwięku. Badania nad lotem ponaddźwiękowym kontynuowano na potrzeby wojska oraz z powodów czysto naukowych.
      Dzięki dekadom badań i nowoczesnym komputerom naukowcy lepiej zrozumieli, jak tworzy się grom dźwiękowy i rozpoczęli prace nad samolotem o takim kształcie, by zmniejszyć intensywność gromu. W latach 2003–2004 NASA prowadziła program Shaped Sonic Boom Demonstration. Używano wówczas samolotu odrzutowego Northrop F5E o zmodyfikowanym kształcie. Testy wypadł pomyślnie. Generowany grom dźwiękowy był cichszy.
      Teraz NASA ma nadzieję, że dzięki eksperymentom z udziałem X-59 opracuje taki kształt kadłuba, który pozwoli na loty z prędkością naddźwiękową nad lądem. Przez ostatnich 50 lat prędkość samolotów pasażerskich utknęła na około 0,8 macha. Znacznie szybsze loty to wciąż niespełnione marzenie, mówi Peter Coen, jeden z menedżerów projektu Quesst. Myślę, że dzięki X-59 i misji Quesst znowu będziemy w stanie pokonać barierę dźwięku, dodaje.
      Pierwsze naddźwiękowe loty X-59 nad terenami zabudowanymi zaplanowano na początek przyszłego roku. Po lotach wśród mieszkańców zostaną przeprowadzone ankiety, z których dowiemy się, czy słyszeli głośne dźwięki, a jeśli tak, to na ile były one uciążliwe.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Specjaliści od biomechaniki z Cornell University obliczyli maksymalną wysokość, z jakiej możemy skoczyć do wody bez większego ryzyka wyrządzenia sobie krzywdy. Uwzględnili rodzaj skoku, a zatem to, która część ciała najpierw styka się z wodą. Woda jest 1000-krotnie gęstsza niż powietrze, więc skacząc przemieszczamy się z bardzo rzadkiego do bardzo gęstego medium, co wiąże się z silnym uderzeniem, mówi profesor Sunghwan Jung, główny autor artykułu opublikowanego na łamach Science Advances.
      Z eksperymentów wynika, że w przypadku osoby, która nie przeszła odpowiedniego treningu, skok do wody z wysokości ponad 8 metrów grozi uszkodzeniami kręgosłupa i karku w sytuacji, gdy jako pierwsza z wodą styka się głowa. Jeśli zaś skoczymy tak, by jako pierwsze z wodą zetknęły się dłonie, to przy skoku z wysokości ponad 12 metrów ryzykujemy uszkodzeniem obojczyka. Z kolei uszkodzenie kolana jest prawdopodobne przy skoku na stopy z wysokości ponad 15 metrów.
      Chcieliśmy sprawdzić, jak pozycja przy skoku do wody wpływa na ryzyko odniesienia obrażeń. Motywowała nas też chęć opracowania ogólnej teorii dotyczącej tego, jak obiekty o różnych kształtach wpadają do wody. Prowadziliśmy więc analizy zarówno kształtu ludzkiego ciała i różnych rodzajów skoków, jak i ciał zwierząt. Mierzyliśmy przy tym oddziałujące siły, dodaje Jung.
      Na potrzeby badań naukowcy wydrukowali trójwymiarowe modele ludzkiej głowy i tułowia, głowy morświna zwyczajnego, dzioba głuptaka zwyczajnego oraz łapy jaszczurki z rodzaju Basiliscus. W ten sposób mogli zbadać różne kształty podczas zetknięcia się z wodą. Wrzucali do niej swoje modele, mierzyli działające siły oraz ich rozkład w czasie. Brali pod uwagę wysokość, z jakiej modele wpadały do wody, a znając działające siły oraz wytrzymałość ludzkich kości, mięśni i ścięgien byli w stanie wyliczyć ryzyko związane ze skakaniem do wody z różnych wysokości. Biomechanika człowieka dysponuje olbrzymią literaturą dotyczącą urazów w wyniku upadków, szczególnie wśród osób starszych, oraz urazów sportowych. Nie znam jednak żadnej pracy dotyczącej urazów podczas skoków do wody, mówi profesor Jung.
      Badania dają nam też wiedzę na temat przystosowania się różnych gatunków zwierząt do nurkowania. Na przykład głuptak zwyczajny ma tak ukształtowany dziób, że może wpadać do wody z prędkością do 24 m/s czyli ponad 86 km/h. Jung i jego zespół od dłuższego czasu badana mechanikę nurkowania zwierząt. Obecnie naukowcy skupiają się na tym, jak lisy nurkują w śniegu.
      Jesteśmy dobrymi inżynierami. Potrafimy zbudować samolot i okręt podwodny. Ale przechodzenie pomiędzy różnymi ośrodkami, co sprawnie robią zwierzęta, nie jest łatwym zadaniem. A to bardzo interesująca kwestia. Inżynierowie chcieliby np. budować drony, które sprawnie poruszałyby się w powietrzu, a później wlatywały pod wodę. Może dzięki naszym badaniom wpadną na odpowiednie rozwiązania. My zaś próbujemy zrozumieć podstawy mechaniki, dodaje Jung.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W Laboratorium Centralnym Katowickich Wodociągów pracują sommelierzy, którzy oceniają wodę pod kątem smaku i zapachu. Osoby te musiały przejść testy i szkolenie. Jak można się domyślić, by testy wody były wiarygodne, należy je prowadzić w specjalnych warunkach.
      Gdzie i jak pracuje sommelier od wody
      W pracowni analizy sensorycznej musi być zachowana temperatura 23 stopni Celsjusza, z tolerancją odchylenia wynoszącą 2 stopnie. Stanowiska, przy których sommelierzy przeprowadzają testy, są oddzielone od siebie boksami, pozbawione okien i wyposażone w oświetlenie, którego parametry określone są w normach. Wszystko po to, by nic ich nie rozpraszało i nie wpływało negatywnie na ich zdolności – wyjaśnia analityczka Laboratorium Centralnego Sylwia Morawiecka.
      Jak dodaje, godzinę przed analizą nie powinno się jeść ani używać perfum (dzięki temu nie zaburza się pracy receptorów węchowych i kubków smakowych). W pomieszczeniu, w którym pracują sommelierzy, przed badaniem włączane jest urządzenie pochłaniające wszelkie niepotrzebne zapachy.
      Analitycy określają, zgodnie z wymaganiami zawartymi w polskich normach, podstawowe smaki (słodki, słony, gorzki, metaliczny, kwaśny i umami) i zapachy (ziemisty i apteczny, stęchły/gnilny). Występowanie któregoś z nich nie wyklucza automatycznie przydatności do spożycia; intensywność musi się po prostu mieścić w przyjętych granicach (akceptowalnych dla konsumentów).
      Rozwiązywanie problemów
      Gdy woda zalega w sieci wewnętrznej budynku, jakość wody może się pogorszyć (smak i zapach stają się bardziej wyczuwalne). W takiej sytuacji zalecane jest odpuszczenie wody przed jej użyciem - wyjaśniono na stronie Urzędu Miasta Katowice.
      Zdarza się, że woda w budynku spełnia normy - nie jest skażona bakteriami i ma właściwe parametry mikrobiologiczne i chemiczne, a mimo to jej smak i zapach jest nieakceptowany przez klientów. Przyczyną może być zastanie wody w tym budynku lub stare, skorodowane rury. Sommelier w trakcie analizy smaku i zapachu niejednokrotnie jest w stanie określić, co jest powodem zmiany smaku i zapachu testowanej wody - tłumaczy cytowana przez PAP kierowniczka Laboratorium Centralnego Katowickich Wodociągów Anna Jędrusiak.
      Praca nie dla każdego
      Tylko ok. 50% chętnych ma właściwą wrażliwość sensoryczną. Na początku osoba zdobywająca upoważnienie do wykonywania badań oznaczania smaku i zapachu przechodzi testy. Jędrusiak wyjaśnia, że przygotowywane są „problematyczne” próbki. [...] Czekamy, czy [kandydat na sommeliera] określi, co jest nie tak. Potem jeszcze przechodzi szkolenie. Ale nawet osoba o takich kwalifikacjach ma pewne ograniczenia - może przebadać w jednej serii 6-8 próbek, potem wrażliwość spada, to zjawisko można też zaobserwować podczas wąchania perfum.
      Odnosząc się do pytania, czy sommelierem może zostać osoba paląca papierosy, Jędrusiak stwierdza, że choć nikt jest dyskryminowany, w praktyce palaczom trudniej przejść testy, bo ich wrażliwość jest nieco inna. Obecnie w zespole pracuje jedna osoba paląca.
      Z biegiem czasu i wzrostem doświadczenia zmysły się wyostrzają. Sylwia Morawiecka przyznaje, że zawsze potrafiła dobrze wyczuwać zapachy i smaki, ale dziś umie je oznaczyć na niższym poziomie.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...